References
- Adomavicius, G., "Towards the Next Generation of Recommender Systems: A Survey of the State‐of‐the‐Art and Possible Extensions", IEEE Transactions on Knowledge and Data Engineering, Vol.17, No.6(2005), 734-749.
- Adomavicius, G. and Y. Kwon, "New Recommendation Techniques for Multicriteria Rating Systems", IEEE Intelligent Systems, Vol.22, No.3(2007), 48-55. https://doi.org/10.1109/MIS.2007.58
- Aggarwal, C. C., C. Procopiuc and P. S. Yu, "Finding Localized Associations in Market Basket Data", IEEE Transactions on Knowledge and Data Engineering, Vol.14, No.1 (2002), 51-62. https://doi.org/10.1109/69.979972
- Ahn, H. J., "A New Similarity Measure for Collaborative Filtering to Alleviate the New User Cold‐Starting Problem", Information Sciences, Vol.178, No.1(2008), 37-51. https://doi.org/10.1016/j.ins.2007.07.024
- Albadvi, A. and M. Shahbazi, "A Hybrid Recommendation Technique based on Product Category Attributes", Expert Systems with Applications, Vol.36, No.9(2009), 11480-11488. https://doi.org/10.1016/j.eswa.2009.03.046
- Baeza‐Yates, R. A. and B. Ribeiro‐Neto, Modern Information Retrieval, Addison‐Wesley Longman Publishing Co., Inc., Boston, 1999.
- Balabanovic, M. and Y. Shoham, "Content‐Based, Collaborative Recommendation", Communications of the ACM, Vol.40, No.3(1998), 66-72.
- Belkin, N. J. and W. B. Croft, "Information Filtering and Information Retrieval: Two Sides of the Same Coin", Communications of the ACM, Vol.35, No.12(1992), 29-38. https://doi.org/10.1145/138859.138861
- Billsus, D. and M. J. Pazzani, "Learning Collaborative Information Filters", 15th International Conference on Machine Learning, (1998), 48-56
- Billsus, D. and M. J. Pazzani, "User Modeling for Adaptive News Access", User Modeling and User‐Adapted Interaction, Vol.10, No.2 (2000), 147-180. https://doi.org/10.1023/A:1026501525781
- Bobadilla, J., F. Serradilla and J. Bernal, "A New Collaborative Filtering Metric that Improves the Behavior of Recommender Systems", Knowledge‐Based Systems, Vol.23, No.6(2010), 520-528. https://doi.org/10.1016/j.knosys.2010.03.009
- Chen, L. S., F. H. Hsu, M. C. Chen and Y. C. Hsu, "Developing Recommender Systems with the Consideration of Product Profitability for Sellers", Information Sciences, Vol.178, No.4(2008), 1032-1048. https://doi.org/10.1016/j.ins.2007.09.027
- Cheung, K. W., J. T. Kwok, M. H. Law, and K. C. Tsui, "Mining Customer Product Ratings for Personalized Marketing", Decision Support Systems, Vol.35, No.2(2003), 231-243. https://doi.org/10.1016/S0167-9236(02)00108-2
- Getoor, L. and M. Sahami, "Using Probabilistic Relational Models for Collaborative Filtering", Workshop on Web Usage Analysis and User Profiling, (1999), 1-6.
- Goldberg, D., D. Nichols, B. M. Oki and D. Terry, "Using Collabortive Filtering to Weave an Information Tapestry", Communications of the ACM, Vol.35, No.12(1992), 61-70. https://doi.org/10.1145/138859.138867
- Goldberg, K., T. Roeder, D. Gupta and C. Perkins, "Eigentaste: A Constant Time Collaborative Filtering Algorithm", Information Retrieval, Vol.4, No.2(2001), 133-151. https://doi.org/10.1023/A:1011419012209
- Hofmann, T., "Collaborative Filtering via Gaussian Probabilistic Latent Semantic Analysis", 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, (2002), 259-266.
- Hofmann, T., "Latent Semantic Models for Collaborative Filtering", ACM Transactions on Information Systems, Vol.22, No.1(2004), 89-115. https://doi.org/10.1145/963770.963774
- Huang, C. L. and W. L. Huang, "Handling Sequential Pattern Decay: Developing a Two Stage Collaborative Recommendation System", Electronic Commerce Research and Applications, Vol.8, No.3(2009), 117-129. https://doi.org/10.1016/j.elerap.2008.10.001
- Jeong, B., J. Lee and H. Cho, "An Iterative Semi‐Explicit Rating Method for Building Collaborative Recommender Systems", Expert Systems with Applications, Vol.36, No.3 (2009), 6181-6186. https://doi.org/10.1016/j.eswa.2008.07.085
- Joaquin, D. and I. Naohiro, "Memory‐based Weighted‐Majority Prediction", ACM SIGIR ʼ99 Workshop on Recommender Systems: Algorithms and Evaluation, (1999), 1-5.
- Kim, H. N., A. T. Ji, I. Ha and G. S. Jo, "Collaborative Filtering based on Collaborative Tagging for Enhancing the Quality of Recommendation", Electronic Commerce Research and Applications, Vol.9, No.1(2010), 73-83. https://doi.org/10.1016/j.elerap.2009.08.004
- Kim, H. K., J. K. Kim and Y. U. Ryu, "Personalized Recommendation over a Customer Network for Ubiquitous Shopping", IEEE Transactions on Services Computing, Vol.2, No.2(2009), 140-151. https://doi.org/10.1109/TSC.2009.7
- Kim, J. K., H. K. Kim and Y. H. Cho, "A User‐Oriented Contents Recommendation System in Peer‐to‐Peer Architecture", Expert Systems with Applications, Vol.34, No.1(2008), 300-312. https://doi.org/10.1016/j.eswa.2006.09.034
- Kumar, R., P. Raghavan, S. Rajagopalan and A. Tomkins, "Recommender Systems: A Probabilistic Analysis", Journal of Computer and System Science, Vol.63, No.1(2001), 42-61. https://doi.org/10.1006/jcss.2001.1757
- Kwon, K., J. Cho and Y. Park, "Multidimensional Credibility Model for Neighbor Selection in Collaborative Recommendation", Expert Systems with Applications, Vol.36, No.3 (2009), 7114-7122. https://doi.org/10.1016/j.eswa.2008.08.071
- Lang, K., "NewsWeeder: Learning to Filter Netnews", 12th International Conference on Machine Learning, (1995), 1-9.
- Lee, J. S. and S. Olafsson, "Two‐way Cooperative Prediction for Collaborative Filtering Recommendations", Expert Systems with Applications, Vol.36, No.3(2009), 5353-5361. https://doi.org/10.1016/j.eswa.2008.06.106
- Lee, T. Q., Y. Park and Y. T. Park, "A Timebased Approach to Effective Recommender Systems Using Implicit Feedback", Expert Systems with Applications, Vol.34, No.4 (2008), 3055-3062. https://doi.org/10.1016/j.eswa.2007.06.031
- Liu, D. R., C. H. Lai and W. J. Lee, "A Hybrid of Sequential Rules and Collaborative Filtering for Product Recommendation", Information Sciences, Vol.179, No.20(2009), 3505-3519. https://doi.org/10.1016/j.ins.2009.06.004
- Liu Z., W. Qu, H. Li and C. Xie, "A Hybrid Collaborative Filtering Recommendation Mechanism for P2P Networks", Future Generation Computer Systems, Vol.26, No.8(2010), 1409-1417. https://doi.org/10.1016/j.future.2010.04.002
- Marlin, B., "Modeling User Rating Profiles for Collaborative Filtering", Advances in Neural Information Processing Systems, Vol.16(2003), 627-634.
- Mooney, R. J. and L. Roy, "Content‐Based Book Recommending Using Learning for Text Categorization", ACM SIGIR ʻ 99 Workshop on Recommender Systems: Algorithms and Evaluation, (1999), 1-8.
- Nakamura, A. and N. Abe, "Collaborative Filtering using Weighted Majority Prediction Algorithm", 15th International Conference on Machine Learning, (1998), 395-403.
- Park, Y. J. and K. N. Chang, "Individual and Group Behavior‐based Customer Profile Model for Personalized Product Recommendation", Expert Systems with Applications, Vol.36, No.2(2009), 1932-1939. https://doi.org/10.1016/j.eswa.2007.12.034
- Pavlov, D. Y. and D. M. Pennock, "A Maximum Entropy Approach to Collaborative Filtering in Dynamic, Sparse, High‐Dimensional Domains", Advances in Neural Information Processing Systems, Vol.15(2002), 1441-1448.
- Pazzani, M. and D. Billsus, "Learning and Revising User Profile: The Identification of Interesting Web Sites", Machine Learning, Vol.27, No.3(1997), 313-331. https://doi.org/10.1023/A:1007369909943
- Pennock, D. M., E. Horvitz, S. Lawrence and C. L. Giles, "Collaborative Filtering by Personality Diagnosis: A Hybrid Memory‐and Model‐ Based Approach", 16th Conference on Uncertainty in Artificial Intelligence, (1999), 473-480.
- Resnick, P., N. Iacovou, M. Suchak, P. Bergstrom and J. Riedl, "GroupLens: An Open Architecture for Collaborative Filtering of Netnews", ACM Conference on Computer Supported Cooperative Work, (1994), 175-186.
- Russell, S. and V. Yoon, "Applications of Wavelet Data Reduction in a Recommender System", Expert Systems with Applications, Vol. 34, No.4(2008), 2316-2325. https://doi.org/10.1016/j.eswa.2007.03.009
- Salter, J. and N. Antonopoulos, "Cinema Screen Recommender Agent: Combining Collaborative and Content‐Based Filtering", IEEE Intelligent Systems, Vol.21, No.1(2006), 35-41. https://doi.org/10.1109/MIS.2006.4
- Salton, G., Automatic Text Processing, Addison‐Wesley Longman Publishing Co., Inc., Boston, 1988.
- Shani, G., D. Heckerman, and R. I. Brafman, "An MDP‐based Recommender System", Journal of Machine Learning Research, Vol.6, No.2 (2002), 1265-1295.
- Shardanand, U. and P. Maes, "Social Information Filtering Algorithms for Automating 'Word of Mouth'", SIGCHI Conference on Human Factors in Computing Systems, (1995), 210-217.
- Si, L. and R. Jin, "Flexible Mixture Model for Collaborative Filtering", 20th International Conference on Machine Learning, (2003), 1-8.
- Symeonidis, P., A. Nanopoulos and Y. Manolopoulos, "Providing Justifications in Recommender Systems", IEEE Transactions on Systems, Man and Cybernetics-Part A: Systems an Humans, Vol.38, No.6(2008), 1262-1272. https://doi.org/10.1109/TSMCA.2008.2003969
- Tang, T. Y., P. Winoto and K. C. C. Chan, "Scaling Down Candidate Sets based on the Temporal Feature of Items for Improved Hybrid Recommendations", Intelligent Techniques for Web Personalization, (2005), 169-186.
- Wang, Y., W. Dai and Y. Yuan, "Website Browsing Aid: A Navigation Graph‐based Recommendation System", Decision Support Systems, Vol.45, No.3(2008), 387-400. https://doi.org/10.1016/j.dss.2007.05.006
- Wei, C. P., C. S. Yang and H. W. Hsiao, "A Collaborative Filtering‐based Approach to Personalized Document Clustering", Decision Support Systems, Vol.45, No.3(2008), 413-428. https://doi.org/10.1016/j.dss.2007.05.008
- Yu, K., A. Schwaighofer, V. Tresp, X. Xu and H. P. Kriegel, "Probabilistic Memory‐based Collaborative Filtering", IEEE Transactions on Knowledge and Data Engineering, Vol. 16, No.1(2004), 56-69. https://doi.org/10.1109/TKDE.2004.1264822
- Yu, K., X. Xu, J. Tao, M. Ester, and H. P. Kriegel, "Instance Selection Techniques for Memory‐based Collaborative Filtering", 2nd SIAM International Conference on Data Mining, (2002), 1-16.
Cited by
- Improving Neighborhood-based CF Systems : Towards More Accurate and Diverse Recommendations vol.18, pp.3, 2011, https://doi.org/10.13088/jiis.2012.18.3.119
- Incorporating Social Relationship discovered from User's Behavior into Collaborative Filtering vol.19, pp.2, 2013, https://doi.org/10.13088/jiis.2013.19.2.001