DOI QR코드

DOI QR Code

Logistic Regression Method in Interval-Censored Data

  • Yun, Eun-Young (Department of Statistics, Pusan National University) ;
  • Kim, Jin-Mi (Department of Statistics, Pusan National University) ;
  • Ki, Choong-Rak (Department of Statistics, Pusan National University)
  • Received : 20110700
  • Accepted : 20110800
  • Published : 2011.10.31

Abstract

In this paper we propose a logistic regression method to estimate the survival function and the median survival time in interval-censored data. The proposed method is motivated by the data augmentation technique with no sacrifice in augmenting data. In addition, we develop a cross validation criterion to determine the size of data augmentation. We compare the proposed estimator with other existing methods such as the parametric method, the single point imputation method, and the nonparametric maximum likelihood estimator through extensive numerical studies to show that the proposed estimator performs better than others in the sense of the mean squared error. An illustrative example based on a real data set is given.

Keywords

References

  1. Efron, B. (1967). The two sample problem with censored data, In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, 831-853.
  2. Fang, H., Sun, J. and Lee, M-L. T. (2002). Nonparametric survival comparison for interval-censored continuous data, Statistica Sinica, 12, 1073-1083.
  3. Finkelstein, D. M. (1986). A proportional hazards model for interval-censored failure time data, Biometrics, 42, 845-854. https://doi.org/10.2307/2530698
  4. Finkelstein, D. M. and Wolfe, R. A. (1985). A semiparametric model for regression analysis of intervalcensored failure time data, Biometrics, 41, 933-945. https://doi.org/10.2307/2530965
  5. Groeneboom, P. and Wellner, J. A. (1992). Information Bounds and Nonparametric Maximum likelihood Estimation, DMV Seminar, Band 19, Birkhauser, New York.
  6. Huang, J. (1996). Efficient estimation for the proportional hazards model with interval censoring, The Annals of Statistics, 24, 540-568. https://doi.org/10.1214/aos/1032894452
  7. Hudgens, M. G. (2005). On nonparametric maximum likelihood estimation with interval censoring and left truncation, Journal of the Royal Statistical Society, Series B, 67, 573-587. https://doi.org/10.1111/j.1467-9868.2005.00516.x
  8. Jongbloed, G. (1998). The iterative convex minorant algorithm for nonparametric estimation, Journal of Computational and Graphical Statistics, 7, 310-321. https://doi.org/10.2307/1390706
  9. Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations, Journal of the American Statistical Association, 53, 457-481. https://doi.org/10.2307/2281868
  10. Kim, C., Park, B. U., Kim, W. and Lim, C. (2003). Bezier curve smoothing of the Kaplan-Meier estimator, The Annals of the Institute of Statistical Mathematics, 55, 359-367.
  11. Lawless, J. F. and Babineau, D. (2006). Models for interval censoring and simulation-based inference for lifetime distributions, Biometrika, 93, 671-686. https://doi.org/10.1093/biomet/93.3.671
  12. Lindsey, J. C. and Ryan, L. M. (1998). Tutorial in biostatistics: Methods for interval-censored data, Statistics in Medicine, 17, 219-238. https://doi.org/10.1002/(SICI)1097-0258(19980130)17:2<219::AID-SIM735>3.0.CO;2-O
  13. Peto, R. (1973). Experimental survival curves for interval-censored data, Applied Statistics, 22, 86-91. https://doi.org/10.2307/2346307
  14. Rubin, D. B. (1987). Multiple Imputation for Noresponse in Surveys, Wiley, New York.
  15. Sun, J. (2006). The Statistical Analysis of Interval-Censored Failure Time Data, Springer.
  16. Tanner, M. A. and Wong, W. H. (1987). The application of Imputation to an estimation problem in grouped lifetime analysis, Technometrics, 29, 23-32. https://doi.org/10.2307/1269880
  17. Tanner, M. A. (1991). Tools for Statistical Inference: Observed Data and Data Augmentation Methods, Springer-Verlag, New York.
  18. Turnbull, B. W. (1976). The empirical distribution with arbitrarily grouped censored and truncated data, Journal of the Royal Statistical Society, Series B, 38, 290-295.
  19. Wellner, J. and Zhan, Y. (1997). A hybrid algorithm for computation of the nonparametric maximum likelihood estimator from censored data, Journal of the American Statistical Association, 92, 945-959. https://doi.org/10.2307/2965558