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Abstract

In this paper we propose a logistic regression method to estimate the survival function and the median

survival time in interval-censored data. The proposed method is motivated by the data augmentation tech-

nique with no sacrifice in augmenting data. In addition, we develop a cross validation criterion to determine

the size of data augmentation. We compare the proposed estimator with other existing methods such as

the parametric method, the single point imputation method, and the nonparametric maximum likelihood

estimator through extensive numerical studies to show that the proposed estimator performs better than

others in the sense of the mean squared error. An illustrative example based on a real data set is given.

Keywords: Cross validation, imputation method, Kaplan-Meier estimator, median survival time, non-

parametric maximum likelihood estimation, survival function.

1. Introduction

Interval-censored data are incomplete data, where the exact time of the event is not available, how-

ever, the event is known to occur between two defined times. Interval censoring is a general concept

of censoring that includes right censoring and left censoring as special cases. Interval-censored data

are more difficult to deal with than the right-censored data because of the complexity and special

structure of the interval censoring. Thus, existing methods in right-censored data cannot be directly

applicable to the interval-censored data. For example, the Kaplan-Meier type estimator for the in-

terval censored data is not analytically given. Among studies in interval-censored data, Peto (1973)

derived survival curve for the interval-censored data, Finkelstein (1986) and Huang (1996) suggested

a proportional hazards model for interval-censored data; in addition, Lindsey and Ryan (1998) pro-

vide an excellent review of this area. Recently, Fang et al. (2002) made nonparametric comparisons,

Hudgens (2005) suggested a nonparametric maximum likelihood estimation with interval censoring

and left truncation, and Lawless and Babineau (2006) proposed a simulation-based inference for
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interval-censored data. An excellent book on the statistical analysis of interval-censored data is Sun

(2006).

Here we consider the case II interval-censored data (a.k.a general case of interval-censored data)

among four types of interval censoring (see Sun (2006) for details) because most of interval-censored

data belong to the case II. As in the right-censored data, the estimation of survival function is of

prime interest when we are given interval-censored data; other issues such as estimation of the

median survival time, comparison of survival functions, relationship between survival times and the

seemingly relevant covariates will be followed. For the parametric estimation of survival function

a specific family of distributions such as Weibull is assumed a priori. There are many methods to

estimate the survival function nonparametrically. Among them imputation method (Rubin, 1987)

and nonparametric maximum likelihood estimator (Turnbull, 1976; Groeneboom and Wellner, 1992;

Jongbloed, 1998) are often used.

In this paper we propose a method of estimating survival function and the median survival time

using a logistic regression method in interval-censored data. The proposed method is motivated

because the fact that the event of interest never occurred before the interval and it surely occurred

after the interval. Therefore, we can augment arbitrary many samples both before and after the

interval. If we regard the event before the interval failure and after the interval success, then

by treating time as covariate a parametric logistic regression can be used to estimate the survival

function. A cross-validation criterion to estimate the number of augmentation is proposed. Through

simulation studies we compare the proposed method with imputation method and nonparametric

maximum likelihood estimator in estimating the survival function and the median survival time.

2. Existing Methods

Let T1, T2, . . . , Tn be true survival times, then Ti is called interval-censored if instead of observing

Ti exactly, only an interval (Li, Ri] is observed such that

Ti ∈ (Li, Ri],

where Li ≤ Ri. Here, Li and Ri indicate the left and right endpoints of the observed event time.

Recall that Li = Ri means an exact observation, Ri = ∞ represents a right-censored observation,

and Li = 0 represents a left-censored observation.

Imputation method (Rubin, 1987) is originally intended for handling missing data problems, and

the method can be adapted to the analysis of interval-censored data. The idea is to impute exact

survival times from interval-censored data and to take advantage of many standard methods for

right-censored data. For subject i, the underlying true failure time Ti is equal to a value within

the observed interval (Li, Ri], i = 1, . . . , n. Mean imputation is to let Ti be the middle point of

the interval for a finite interval, i.e., Ri < ∞. For intervals with Ri = ∞, they are regarded as

right-censored observations. Taking Ti to be Li or Ri is the left end point imputation or the right

end point imputation, respectively. Then, the interval-censored data are transformed to the right-

censored data, and therefore, many standard methods for right-censored data can be used. This

imputation method is particularly called a single imputation method. On the other hand, multiple

imputation methods (Tanner and Wong, 1987; Tanner, 1991) are also available in analyzing the

interval-censored data.

For the right-censored data, the nonparametric maximum likelihood estimator(NPMLE) of a sur-

vival function is just the Kaplan-Meier estimator (Kaplan and Meier, 1958). For the interval-



Logistic Regression Method in Interval-Censored Data 873

censored data, the NPMLE does not have a closed form and can only be obtained numerically using

iterative algorithms. There are three algorithms for computing the NPMLE of the survival function

in interval-censored data. The first one is the self-consistency algorithm suggested by Turnbull

(1976), and it is motivated by the self-consistency equation of Efron (1967). The second one is

the iterative convex minorant(ICM) algorithm, originally introduced by Groeneboom and Wellner

(1992) and later developed by Jongbloed (1998). The third one, called the EM-ICM algorithm, is

a mixture of the self-consistency algorithm and the ICM algorithm, and it is suggested by Wellner

and Zhan (1997). Among three algorithms ICM and EM-ICM are faster than the self-consistency

algorithm, however, the self-consistency algorithm is still used quite often because it is simple and

accurate, so that it.

3. Proposed Estimators

3.1. Motivation

Assume that we have n interval-censored data (Li, Ri], i = 1, . . . , n, where Ri could be infinite for

some i. Also, assume that there exists an interval (0, w) such that

P (T > w) ≃ 0.

For example, if T ∼ Exp(1), then P (T > 5) < 10−2. Since w is unknown in real data set we have

to estimate it. Let d be the number of finite Ri’s and let D = {i : Ri < ∞} be the index set of

finite Ri’s. Also, let

A =
∑
i∈D

Ri − Li

d

be the average length of finite intervals. Here we propose to estimate w as

ŵ = A+max
(
L(n), R(d)

)
, (3.1)

where L(n) and R(d) are the largest order statistic of L1, . . . , Ln and Ri, i ∈ D, respectively. That

is to say we estimate w as the largest value among finite values of Li and Ri plus the average length

of finite intervals. This estimating scheme is based on the idea of Kim et al. (2003) in the right

censored data.

First, we partition the interval (0, w) into k subintervals with equal length w/k, i.e., the jth subin-

terval is given by (
(j − 1)w

k
,
jw

k

)
, j = 1, . . . , k.

The number of subintervals k must be given a priori or estimated by data, and this issue will be

discussed in detail in Section 3.2.4. If

Li ∈
(
(l − 1)w

k
,
lw

k

)
(3.2)

for some l = 1, . . . , k, then define, for each i = 1, . . . , n,

Xij =
jw

k
, j = 1, . . . , k
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Figure 3.1. Illustration of constructing (Xij , Yij), j = 1, . . . , k for each i = 1, . . . , n.

and

Yij = 0, j = 1, . . . , l − 1;

Yij = 1, j = l, . . . , k.

Therefore, for a given interval-censored observation (Li, Ri], we generate k pair of observations,

(Xij , Yij), j = 1, . . . , k

for each i = 1, . . . , n. Hence, for n interval-censored data (Li, Ri], i = 1, . . . , n, we generate kn

observations

(Xij , Yij), i = 1, . . . , n; j = 1, . . . , k.

Note that Xij denotes a specific time jw/k and Yij denotes the corresponding status of the event

of interest, i.e., Yij = 0 implies the event does not occurred yet at time jw/k and Yij = 1 implies

the event already occurred at time jw/k. Figure 3.1 illustrates the construction of (Xij , Yij), j =

1, . . . , k for each i = 1, . . . , n.

Remark 3.1. In generating (Xij , Yij), i = 1, . . . , n; j = 1, . . . , k, we see that in some cases the

mean value

Mi =
Li +Ri

2
(3.3)

of the interval (Li, Ri] instead of Li in (3.2) gives better results (see Section 4).

In defining Mi, we replace Ri by ŵ if Ri = ∞.

3.2. Proposed estimators

We propose a method of logistic regression based on kn observations

(Xij , Yij), i = 1, . . . , n; j = 1, . . . , k

to estimate the survival function of r.v. T and to estimate the median survival time of r.v. T in

interval-censored data. Let

P (Y = 1|X = t) = π(t)

be the probability of success for a given covariate t, and we consider a simple logistic regression

model defined as

logitπ ≡ log

(
π

1− π

)
= β0 + β1t.
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3.2.1. Median survival time Let β̂0 and β̂1 be MLEs of β0 and β1, respectively. The median

survival time is estimated as a time t̂M when π̂ = 0.5. Therefore, the estimator of median survival

time is given by

t̂M = − β̂0
β̂1
.

For the interval estimation of the median survival time, we need to evaluate the variance of t̂M ,

however, exact computation is not possible. Instead we compute approximate variance using the

multivariate delta method. Since

Var
(
t̂M
)
= Var

[
g
(
β̂0, β̂1

)]
,

where g(x, y) = −x/y, we have

Var
(
t̂M
)
≃ ∇gtΣ∇g,

where

∇g =

(
∂g(β0, β1)

∂β0
,
∂g(β0, β1)

∂β1

)
=

(
− 1

β1
,
β0
β2
1

)
and

Σ =

(
Var
(
β̂0
)

Cov
(
β̂0, β̂1

)
Var
(
β̂1
) )

.

Therefore,

Var(t̂M ) ≃ v00 − 2ρ̂v01 + ρ̂v211

β̂2
1

,

where v00 = Var(β̂0), ρ̂ = β̂0/β̂1, v01 = Cov(β̂0, β̂1), v11 = Var(β̂1). Using this result, we can

compute the approximate 100× (1− α)% confidence interval for the median survival time tM as(
t̂M − zα

2
s.e.
(
t̂M
)
, t̂M + zα

2
s.e.
(
t̂M
))
,

where s.e.(t̂M ) = (V̂ar(t̂M ))1/2 is the standard error of t̂M .

3.2.2. Survival function As an estimator of the survival function S(t), consider the estimator of

the probability of success at time t, i.e.,

π̂(t) = P̂ (Y = 1|X = t)

=
exp

(
β̂0 + β̂1t

)
1 + exp

(
β̂0 + β̂1t

) .
One disadvantage of the estimator π̂(t) is that π̂(t) → 1 as t→ 0 is not guaranteed. If t→ 0, then

ŜL(t) is close to 1/(1 + e−β̂0). Therefore, we suggest an adjusted version, ŜL(t), of π̂(t) as

ŜL(t) = π̂(t) + (1− π̂(0))
t̂M − t

t̂M
,

which satisfies ŜL(0) = 1.
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3.2.3. Regression model One novel aspect of our proposed estimator is that the survival function

and the median survival time can be estimated even when covariates exist. Assume that z represents

p-dimensional covariates including variables like age and sex. Consider a multiple logistic regression

model

logitπ = β0 + β1t+ γ′z.

Then, the estimator of median survival time is given by

t̂M = − β̂0 + γ̂′z

β̂1

and the estimator of survival function is given by

ŜL(t) = π̂(t) + (1− π̂(0))
t̂M − t

t̂M
.

3.2.4. Estimation of the number of subintervals To estimate the number of subintervals k based on

the data, we propose to use the cross-validation criterion. Let Mi be the mean value of the interval

censored data (Li, Ri] defined in (3.3). Let t̂M,k(i) be the estimate of tM using k subintervals and

(n− 1) observations after deleting the ith observation. Then, define

CV(k) =
n∑

i=1

{
Mi − t̂M,k(i)

}2
(3.4)

and the estimate of k is given by

k̂ = arg min
k

CV(k).

The performance of the proposed cross-validation criterion is very good.

4. Numerical Studies

4.1. Design for numerical studies

We perform simulation studies to see numerical behavior of the proposed estimator. One difficulty

in numerical studies under interval censoring is generating random intervals because convenient

and useful techniques are not suggested so far in the relevant literature. While the generation of

randomly right censored data are quite easy and straightforward with required censoring percentage,

the generation of random intervals in interval censoring is difficult in several points of view. First, it

is not easy to decide the length of interval which is deeply related with the percentage of censoring

because if the length of interval is large it is almost censored and if the length of interval is small

it is almost uncensored. Second, it is not easy to control the number of intervals with an infinite

right-handed value i.e., (L,∞]. Here we suggest a method of generating random intervals (L,R] as

follows;

Step 1: Generate random number T from a specified distribution, Weibull(λ, γ), say.

Step 2: Let L = max(0, T − UL) and R = T + UR, where UL ∼ U(0, a) and UR ∼ U(0, b) for some

positive constants a and b.



Logistic Regression Method in Interval-Censored Data 877

Step 3: After generating n random intervals based on Step 1 and Step 2, replace randomly α ×
100%, where 0 < α < 1, of Ri’s by ∞ among intervals (Li, Ri], i = 1, . . . , n satisfying L

being larger than the median of T (i.e., 0.69 for Weibull(1, 1) and 1.67 for Weibull(1/2, 2),

respectively).

Remark 4.1. In real data sets, the interval with R = ∞ often occurs when the corresponding L

is large compared to others. Step 3 reflects this phenomenon when the percentage of infinity is

less than 50%. Note that the percentage of infinity in interval censored data may be viewed as the

censoring percentage in the right-censored data.

4.2. Numerical results

Sample sizes considered are n = 30 and 50, and 100 replications are done. In this study, we will

compare four estimators for the median survival time tM :

(1) t̂P : parametric distribution method using the true function

(2) t̂I : mean imputation method

(3) t̂S : self-consistency method

(4) t̂L: logistic regression method

Also, we will compare four estimators for the survival function S(t):

(1) ŜP (t): parametric distribution method using the true function

(2) ŜI(t): mean imputation method

(3) ŜS(t): self-consistency method

(4) ŜL(t): logistic regression method

To compare the numerical performance of each estimator we will evaluate mean squared error(MSE)

for estimators of the median survival time and mean integrated squared error(MISE) for estimators

of the survival function.

The distribution we considered for the survival time is Weibull distribution with parameters λ and

γ denoted by Weibull(λ, γ). Here we consider two types of Weibull distribution, Weibull(1, 1)

and Weibull(1/2, 2). First, Weibull(1, 1) is the exponential distribution with mean 1, and the true

median is tM = 0.69. Second, Weibull(1/2, 2) is the rightly skewed distribution, and the true

median is tM = 1.67. Also, we consider 1/2 and 1 for a and b in Step 2, and we consider α = 0.1

and α = 0.3 in Step 3.

To decide the number of subintervals k, we proposed to use the cross validation criterion given

in (3.4). The see the behavior of this criterion we compute MSE and CV for k = 2, 3, . . . , 20,

respectively. Figure 4.1 shows them when the true distribution is Weibull(1, 1), the sample size is

30, a = b = 1, and α = 0.1. We see that MSE is minimized when k = 9 and CV is minimized when

k = 11. Also, both curves show very similar pattern. For other distributions with different sample

size, different a and b, and different α, they show a quite similar pattern. In fact, the minimizer

of MSE is between 7 and 15, and the minimizer of CV is between 7 and 14 in all situations

considered. Also, the difference between minimizers of MSE and CV in all situations was less than

4. Conclusively, the CV criterion in (3.4) reflects the behavior of MSE very well.
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Figure 4.1. MSE and CV from Weibull(1, 1) with a = b = 1, α = 0.1, and n = 30.

Table 4.1. MSE of t̂M

Dist. n % of ∞ (a, b) t̂P t̂I t̂S t̂L

10%
(0.5, 0.5) 2.99 3.74 4.58 2.35

30
(1, 1) 3.62 3.60 5.36 1.52

30%
(0.5, 0.5) 5.65 3.28 3.99 2.44

Weibull(1, 1)
(1, 1) 4.16 2.55 4.09 1.62

10%
(0.5, 0.5) 2.08 2.39 3.19 1.64

50
(1, 1) 2.27 1.75 3.08 0.82

30%
(0.5, 0.5) 3.82 3.23 3.53 1.46

(1, 1) 2.96 1.46 2.16 0.82

10%
(0.5, 0.5) 3.60 4.75 5.89 1.77

30
(1, 1) 3.85 4.82 6.80 3.50

30%
(0.5, 0.5) 6.32 4.66 5.85 1.43

Weibull(2, 2)
(1, 1) 5.15 4.16 6.70 3.76

10%
(0.5, 0.5) 2.44 3.48 3.61 1.49

50
(1, 1) 2.74 3.36 4.66 3.71

30%
(0.5, 0.5) 5.28 4.36 4.94 1.59

(1, 1) 3.32 3.59 4.26 4.09

To see the numerical performance we evaluate MSE of four estimators, t̂P , t̂I , t̂S , and t̂L of the

median survival time with the results listed in Table 4.1. The proposed estimator t̂L performs very

well and in most cases it is best in the sense of MSE. Also, the mean imputation method t̂I is quite

comparable to t̂P and is even superior in many cases. In general, the MSE decreases as n increases,

however, it does not depend a lot on the percentage of infinity and the length of interval.

For the performance of four estimators of the survival function, we compute MISE. As shown in

Table 4.2, we see similar results as in estimators of the median survival time. One difference fact

is that MISE of the estimators of the survival function depends on the length of interval. This

phenomenon stems from the fact that a wide interval can cause poor estimate of survival function

at boundaries, while it may not affect the estimation of the median survival time.
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Table 4.2. MISE of Ŝ(t)

Dist. n % of ∞ (a, b) ŜP ŜM ŜS ŜL

10%
(0.5, 0.5) 1.32 2.04 2.89 1.62

30
(1, 1) 1.48 2.43 3.67 2.07

30%
(0.5, 0.5) 5.06 7.82 7.34 1.89

Weibull(1, 1)
(1, 1) 4.06 6.83 6.67 2.20

10%
(0.5, 0.5) 0.96 1.51 1.85 1.26

50
(1, 1) 0.98 1.83 1.99 1.57

30%
(0.5, 0.5) 4.41 8.00 7.09 1.30

(1, 1) 3.58 7.10 6.32 1.61

10%
(0.5, 0.5) 1.26 1.96 2.71 2.20

30
(1, 1) 1.37 1.97 3.27 5.48

30%
(0.5, 0.5) 3.20 5.08 5.37 2.20

Weibull(2, 2)
(1, 1) 2.40 4.07 5.11 5.23

10%
(0.5, 0.5) 0.85 1.35 1.76 1.71

50
(1, 1) 0.93 1.28 1.90 4.87

30%
(0.5, 0.5) 2.85 5.04 4.91 1.74

(1, 1) 1.77 3.47 3.50 5.37

Table 5.1. Observed intervals in months for times to breast retraction of early breast cancer patients

Group Observed intervals in months

(45, ], (27, 37], (37, ], (4, 11], (17, 25], (6, 10], (46, ], (0, 5], (33, ], (15, ]

(0, 7], (26, 40], (18, ], (46, ], (19, 26], (46, ], (46, ], (24, ], (11, 15], (11, 18],

RT (46, ], (27, 34], (36, ], (37, ], (22, ], (7, 16], (36, 44], (5, 12], (38, ], (34, ],

(17, ], (46, ], (19, 35], (46, ], (5, 12], (9, 14], (36, 48], (17, 25], (36, ], (46, ],

(37, 44], (37, ], (24, ], (0, 8], (40, ], (33, ]

(8, 12], (0, 5], (30, 34], (16, 20], (13, ], (0, 22], (5, 8], (13, ], (30, 36], (18, 25],

(24, 31], (12, 20], (10, 17], (17, 24], (18, 24], (17, 27], (11, ], (8, 21], (17, 26],

RCT
(35, ], (17, 23], (33, 40], (4, 9], (16, 60], (33, ], (24, 30], (31, ], (11, ],

(15, 22], (35, 39], (16, 24], (13, 39], (15, 19], (23, ], (11, 17], (13, ], (19, 32],

(4, 8], (22, ], (44, 48], (11, 13], (34, ], (34, ], (22, 32], (11, 20], (14, 17],

(10, 35], (48, ]

∗ RT: radiation therapy alone

RCT: radiation therapy plus adjuvant chemotherapy

5. An Example

For an illustrative example, we use the data set of the RCT (radiation therapy plus adjuvant

chemotherapy) group of early breast cancer (Finkelstein and Wolfe, 1985) given in Table 5.1. Here

we focus on the RT group which consists of 46 interval censored observations. The number of

finite Ri’s is d = 21 and the average length of finite intervals is A = 8.97. Also, L(n) = 44

and R(d) = 60. Therefore, we estimate w as ŵ = max(44, 60) + 8.97 = 68.97. In addition, we

estimate the number of subintervals k = 26 based on the cross-validation criterion in (3.4), and

the behavior of CV(k) is given in Figure 5.1(a). We compute three estimators of the survival

function; ŜI(t), ŜS(t), and ŜL(t). Using these results, we compute three estimators of the median

survival time; t̂I , t̂S , and t̂L. The results are given in Figure 5.1(b). As shown in this Figure we

see that t̂I = 21.5, t̂S = 20.0, t̂L = 17.2. Note that the mean imputation method is quite similar

to the Kaplan-Meier estimator in the right censored data, and it is well known that the estimator

of the median survival based on the Kaplan-Meier estimator in the right censored data tends to

overestimate the true median survival time. In this sense, it is preferable if the median survival
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Figure 5.1. (a) Cross-validation curve and (b) Estimators of survival function and median survival times in breast cancer data.

time estimator is less than the estimator based on the mean imputation method. Note that the

proposed estimator is less than that of the mean imputation method.

6. Concluding Remarks

Interval censoring is a type of censoring that has become increasingly common in the areas of

medicine and clinical trials. Interval-censored data are incomplete data, where the exact time of

the event is unavailable; however, the event is known to occur between two defined times. Interval-

censored data are more difficult to deal with than the right-censored data because of the complexity

and special structure of the interval-censored data. Thus, existing methods in right-censored data

cannot be directly applicable to the interval-censored data. For example, the Kaplan-Meier type

estimator for the interval censored data is not analytically given. There are four types in interval-

censored data; case I interval-censoring, case II interval censoring, double interval censoring, and

panel count data.

In this paper, studied estimation of survival function and median survival time in case II (general)

interval censoring among four types of interval-censored data. Specifically, we suggested a logistic

regression method to estimate the median survival time and survival function in interval-censored

data. To do this we partition the support into k subintervals of equal length, and the response

variable will be 0 until the subinterval meet the mean of interval-censored time. Since then the

response variable is assigned as 1. The covariate is the time representing the subintervals. Also, we

proposed a new and novel method of generating random numbers under interval-censoring set-up.

Through simulation studies we compare our methods to imputation method and nonparametric

maximum likelihood estimator. Under various simulation schemes the proposed estimators showed

better numerical performance in the sense of the mean squared error for estimating the median

survival time and the mean integrated squared error for estimating the survival function. Also, the

proposed estimator can be used when covariates exist while existing estimators cannot.
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