Abstract
In this paper, a new tube-radius-measuring algorithm has been proposed for effectively measuring the radii of small tubes under severe noise conditions that can also perform well when metal scraps that make it difficult to measure the radius correctly are inside the tube hole. In the algorithm, we adopt a fuzzy searching method that searches for the center of the inner circle by using fuzzy parameters for distance and orientation from the initial search point. The proposed algorithm has been implemented and tested on both synthetic and real-world tube images, and the performance is compared to existing circle-detection algorithms, such as the Hough transform and RANSAC methods, to prove the accuracy and effectiveness of the algorithm. From this comparison, it is concluded that the proposed algorithm has excellent performance in terms of measurement accuracy and computation time.
본 논문에서는 튜브의 내부에 이물질이 있거나, 조명에 의한 영상잡음이 많은 경우에도 내경중심과 내경을 정확하게 측정할 수 있는 머신비전 기반의 새로운 측정알고리즘을 제안하였다. 또한 내경과 외경 중심간의 이격거리인 편심량도 계산할 수 있다. 제안된 알고리즘은 퍼지제어에 바탕을 둔 반복탐색에 의하여 임의의 초기탐색점에서 거리와 방향을 단계적으로 이동함으로써 내경의 중심에 도달하게 한다. 제안된 알고리즘은 계산시간 뿐만 아니라 측정정밀도 면에도 기존의 방법에 비해 우수하였다. 성능을 비교하기 위하여 생산현장에서 생산되는 튜브들을 이용하여 실험을 수행하였고, 실험 결과 제안된 알고리즘을 사용하는 경우가 널리 사용되고 있는 알고리즘인 Hough 변환 방식과 RANSAC 방식보다 계산시간 및 측정정밀도에서 우수함을 보였다.