Knot Removal of B-spline Curves using Hausdorff Distance

하우스도르프 거리를 이용한 B-spline 곡선의 낫제거

  • Oh, Jong-Seok (Department of Multimedia Engineering, Dongguk University) ;
  • Yoon, Seung-Hyun (Department of Multimedia Engineering, Dongguk University)
  • 오종석 (동국대학교 대학원 멀티미디어공학과) ;
  • 윤승현 (동국대학교 대학원 멀티미디어공학과)
  • Received : 2011.07.18
  • Accepted : 2011.08.26
  • Published : 2011.09.01

Abstract

We present a new technique for removing interior knots of parametric B-spline curves. An initial curve is constructed by continuous $L_{\infty}$ approximation proposed by Eck and Hadenfeld. We employ Hausdorff distance to measure the shape difference between the original curve and the initial one. The final curve is obtained by minimizing their Hausdorff distance. We demonstrate the effectiveness of our technique with experimental results on various types of planar and spatial curves.

본 논문에서는 B-spline 곡선의 낫 제거 (knot removal)를 위한 새로운 기법을 제안한다. 제안된 기법은 낫 제거 전후, 두 곡선의 형상의 차이를 측정하기 위해 하우스도르프 거리 (Hausdorff distance)를 이용한다. 먼저 Eck와 Hadenfeld의 연속 $L_{\infty}$ 근사법[1]을 이용하여 낫이 제거된 곡선을 생성한다. 수치적 최적화 (numerical optimization) 기법을 통해 생성된 곡선의 제어점 위치를 조정하여, 낫 제거 전 곡선과의 하우스도르프 거리가 최소화 되도록 한다. 본 논문에서는 다양한 형태와 차수의 곡선들(space curves)에 대한 낫 제거 실험을 통해 제안된 기법의 효율성과 우수성을 입증한다.

Keywords

References

  1. M. Eck and J. Hadenfeld, "Knot removal forB-splinecurves," Computer Aided Geometric Design, vol. 12, no. 3, pp. 259-282,1995. https://doi.org/10.1016/0167-8396(94)00012-H
  2. L. Piegl and W. Tiller, The NURBS Book, 2nd ed. Springer-Verlag,1997.
  3. D. Salomon, Curves and Suifaces for Computer Graphics. Springer, 2006.
  4. G. Farin, Curves and Surfacesfor CAGD, 5th ed. Academic Press, 2002.
  5. T. Lyche and K. Morken, "Knot removal for parametric Bspline curves and surfaces," Computer Aided Geometric Design, vol. 4, no. 3, pp. 217-230, November 1987. https://doi.org/10.1016/0167-8396(87)90013-6
  6. A. L. Mehaute and Y. Lafranche, "Knot removal for scattered data," in Proceedings of SPIE, 1991, pp. 161-164.
  7. W. Rucklidge, Efficient Visual Recognition Using the Hausdorff Distance. Springer, 1996.
  8. M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle, "Multiresolution analysis of arbitrary meshes," in SIGGRAPH'95 Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, 1995, pp. 173-182.
  9. M. Tang, M. Lee, and Y.-J. Kim, "Interactive Hausdorff distance computation for general polygonal models," ACM Transactions on Graphics, vol. 28, no. 3, August 2009.
  10. Y.-J. Kim, Y.-T. Oh, S.-H. Yoon, M.-S. Kim, and G. Elber, "Precise Hausdorff distance computation for planar freeform curves using biarcs and depth buffer," The Visual Computer, vol. 26,no. 6-8, pp. 1007-1016, 2010. https://doi.org/10.1007/s00371-010-0477-3
  11. T. Lyche and K. Morken, "Knot removal for parametric B-spline curves and surfaces," Computer Aided Geometric Design, vol. 4, no. 3, pp. 217-230, 1987. https://doi.org/10.1016/0167-8396(87)90013-6
  12. S. A. Tawfik, "Minimax approximation and Remez algorithm," Computer Aided Design, vol. 40, pp. 999-1008, October 2008. https://doi.org/10.1016/j.cad.2008.08.001
  13. J.-W. Jo and S.-S. Han, "The NURBS human body modeling using local knot removal," Fibers and Polymers, vol. 6, no. 4, pp. 348-354, 2005. https://doi.org/10.1007/BF02875674
  14. W.-K. Wang, H. Zhang, H. Park, J.-H. Yong, J.-C. Paul, and J.-G. Sun, "Reducing control points in lofted B-spline surface interpolation using common knot vector determination," Computer Aided Design, vol. 40, no. 10-11, pp. 999-1008, October 2008. https://doi.org/10.1016/j.cad.2008.08.001
  15. A. R. Ibrahim, S. M. Shamsuddin, and A. AIi, "Improving Non-Uniform Rational B-splines' knot removal with Particle Swarm Optimization," in Proceedings of the 2009 6th International Conference on Computer Graphics, Imaging and Visualization, 2009, pp. 24-27.
  16. M. Barton, I. Hanniel, G. Elber, and M.-S. Kim, "Precise Hausdorff distance computation between polygonal meshes," Computer Aided Geometric Design, vol. 27, no. 8, pp. 580-591, 2010. https://doi.org/10.1016/j.cagd.2010.04.004
  17. R. Klein, G. Liebich, and W. Strailer, "Mesh reduction with error control," in Proceedings of the 7th Conference on Visualization '96. IEEE Computer Society Press, 1996, pp. 311-318.
  18. G. Elber and T. Grandine, "Hausdorff and minimal distances between parametric freeforms in $R^{2}$ and $R^{3}$," in Proceedings of the 5th International Conference on Advances in Geometric Modeling and Processing, 2008, pp. 191-204.
  19. B. JuttIer, "Bounding the Hausdorff distance between implicitly defined and/or parametric curves," in Mathematical Methods for Curves and Surfaces. Vanderbilt University, 2001, pp. 223-232.
  20. W.-H. Press, S.-A. Teukolsky, W.-T. Vetterling, and B.-P.Flannery, Numerical Recipes in C. Cambridge University Press, 1992.
  21. IRIT 9.0 User's Manual. Technion, Octorber (2002). [Online]. Available: http://www.cs.technion.ac.il/-irit/