DOI QR코드

DOI QR Code

Kinetics and Mechanism of the Pyridinolysis of S-Aryl Phenyl Phosphonochloridothioates in Acetonitrile

  • Received : 2011.08.22
  • Accepted : 2011.08.29
  • Published : 2011.10.20

Abstract

Kinetic studies on the reactions of Y-S-aryl phenyl phosphonochloridothioates with X-pyridines have been carried out in MeCN at $55.0^{\circ}C$. The Hammett and Bronsted plots for substituent X variations in the nucleophiles are biphasic concave upwards with a break point at X = H. The Hammett plots for substituent Y variations in the substrates are biphasic concave upwards with a break point at Y = H, and the sign of ${\rho}_Y$ is changed from unusual negative (${\rho}_Y$ < 0) with the weaker electrophiles to positive (${\rho}_Y$ > 0) with the stronger electrophiles. The stepwise mechanism is proposed on the basis of the ${\rho}_X$, ${\beta}_X$, and ${\rho}_{XY}$ values as follows: a ratelimiting leaving group departure from the intermediate involving a frontside attack and product-like TS for the stronger nucleophiles and weaker electrophiles; a rate-limiting leaving group departure from the intermediate involving a backside attack and product-like TS for the weaker nucleophiles and electrophiles; a rate-limiting bond formation involving a frontside attack for the stronger nucleophiles and electrophiles; a rate-limiting bond formation involving a backside attack for the weaker nucleophiles and stronger electrophiles. The substituent effects of X and Y on the pyridinolysis mechanisms of $R_1R_2P$(=S)Cl-type substrates are discussed.

Keywords

References

  1. Guha, A. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 12. https://doi.org/10.1021/jo990671j
  2. Lee, H. W.; Guha, A. K.; Kim, C. K.; Lee, I. J. Org. Chem. 2002, 67, 2215. https://doi.org/10.1021/jo0162742
  3. Adhikary, K. K.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 2003, 24, 1135. https://doi.org/10.5012/bkcs.2003.24.8.1135
  4. Hoque, M. E. U.; Dey, N. K.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 1797. https://doi.org/10.5012/bkcs.2007.28.10.1797
  5. Adhikary, K. K.; Lumbiny, B. J.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 851. https://doi.org/10.5012/bkcs.2008.29.4.851
  6. Lumbiny, B. J.; Adhikary, K. K.; Lee, B. S.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 1769 https://doi.org/10.5012/bkcs.2008.29.9.1769
  7. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, H. W. J. Phys. Org. Chem. 2010, 23, 1022. https://doi.org/10.1002/poc.1709
  8. Dey, N. K.; Adhikary, K. K.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2010, 31, 3856. https://doi.org/10.5012/bkcs.2010.31.12.3856
  9. Dey, N. K.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 709. https://doi.org/10.5012/bkcs.2011.32.2.709
  10. Hoque, M. E. U.; Dey, S.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1138. https://doi.org/10.5012/bkcs.2011.32.4.1138
  11. Guha, A. K.; Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1375. https://doi.org/10.5012/bkcs.2011.32.4.1375
  12. Guha, A. K.; Kim, C. K.; Lee, H. W. J. Phys. Org. Chem. 2011, 24, 474. https://doi.org/10.1002/poc.1788
  13. Guha, A. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1999, 765.
  14. Lee, H. W.; Guha, A. K.; Lee, I. Int. J. Chem. Kinet. 2002, 34, 632. https://doi.org/10.1002/kin.10081
  15. Hoque, M. E. U.; Dey, S.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Org. Chem. 2007, 72, 5493. https://doi.org/10.1021/jo0700934
  16. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 936. https://doi.org/10.5012/bkcs.2007.28.6.936
  17. Dey, N. K.; Han, I. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 2003. https://doi.org/10.5012/bkcs.2007.28.11.2003
  18. Hoque, M. E. U.; Dey, N. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2007, 5, 3944. https://doi.org/10.1039/b713167d
  19. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2008, 21, 544. https://doi.org/10.1002/poc.1314
  20. Lumbiny, B. J.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 2065. https://doi.org/10.5012/bkcs.2008.29.10.2065
  21. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2009, 22, 425. https://doi.org/10.1002/poc.1478
  22. Dey, N. K.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2009, 30, 975. https://doi.org/10.5012/bkcs.2009.30.4.975
  23. Hoque, M. E. U.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2009, 7, 2919. https://doi.org/10.1039/b903148k
  24. Dey, N. K.; Lee, H. W. Bull. Korean Chem. Soc. 2010, 31, 1403. https://doi.org/10.5012/bkcs.2010.31.5.1403
  25. Dey, N. K.; Kim, C. K.; Lee, H. W. Org. Biomol. Chem. 2011, 9, 717. https://doi.org/10.1039/c0ob00517g
  26. Adhikary, K. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1625. https://doi.org/10.5012/bkcs.2011.32.5.1625
  27. Lee, I.; Kim, C. K.; Li, H. G.; Sohn, C. K.; Kim, C. K.; Lee, H. W.; Lee, B. S. J. Am. Chem. Soc. 2000, 122, 11162. https://doi.org/10.1021/ja001814i
  28. Han, I. S.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 889. https://doi.org/10.5012/bkcs.2011.32.3.889
  29. Hehre, W. J.; Random, L.; Schleyer, P. V. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986; Chapter 4.
  30. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165. https://doi.org/10.1021/cr00002a004
  31. Fischer, A.; Galloway, W. J.; Vaughan, J. J. Chem. Soc. 1964, 3591. https://doi.org/10.1039/jr9640003591
  32. Dean, J. A. Handbook of Organic Chemistry; McGraw-Hill: New York, 1987; Chapter 8.
  33. Albert, A.; Serjeant, E. P. The Determination of Ionization Constants; 3rd ed., Chapman and Hall: New York, 1984; p 154.
  34. Koh, H. J.; Han, K. L.; Lee, I. J. Org. Chem. 1999, 64, 4783. https://doi.org/10.1021/jo990115p
  35. Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem. 1998, 63, 9834. https://doi.org/10.1021/jo9814905
  36. Lee, I.; Kim, C. K.; Han, I. S.; Lee, H. W.; Kim, W. K.; Kim, Y. B. J. Phys. Chem. B 1999, 103, 7302. https://doi.org/10.1021/jp991115w
  37. Coetzee, J. F. Prog. Phys. Org. Chem. 1967, 4, 45. https://doi.org/10.1002/9780470171837.ch2
  38. Lee, I. Chem. Soc. Rev. 1990, 19, 317. https://doi.org/10.1039/cs9901900317
  39. Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
  40. Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529. https://doi.org/10.1135/cccc19991529

Cited by

  1. Kinetics and Mechanism of the Pyridinolysis of 1,2-Phenylene Phosphorochloridate in Acetonitrile vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.270
  2. Pyridinolysis of Bis(N,N-dimethylamino) Phosphinic Chloride in Acetonitrile vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.309
  3. Kinetics and Mechanism of the Anilinolysis of Dibutyl Chlorophosphate in Acetonitrile vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.663
  4. Kinetics and Mechanism of the Pyridinolysis of (2R,4R,5S)-(+)-2-Chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-Sulfide in Acetonitrile vol.33, pp.3, 2012, https://doi.org/10.5012/bkcs.2012.33.3.1047
  5. Pyridinolyses of O-Propyl and O-Isopropyl Phenyl Phosphonochloridothioates in Acetonitrile vol.34, pp.9, 2013, https://doi.org/10.5012/bkcs.2013.34.9.2811
  6. -Ethyl Phenyl Phosphonochloridothioates in Acetonitrile vol.45, pp.5, 2013, https://doi.org/10.1002/kin.20773
  7. Nucleophilic Substitution Reactions of O-Methyl N,N-Diisopropylamino Phosphonochloridothioate with Anilines and Pyridines vol.35, pp.4, 2014, https://doi.org/10.5012/bkcs.2014.35.4.1016
  8. Kinetics and Mechanism of the Pyridinolysis of Diisopropyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4387
  9. Kinetics and Mechanism of the Anilinolysis of Dipropyl Chlorothiophosphate in Acetonitrile vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4403
  10. Pyridinolysis of Dibutyl Chlorophosphate in Acetonitrile vol.33, pp.3, 2011, https://doi.org/10.5012/bkcs.2012.33.3.1055
  11. Kinetics and Mechanism of the Pyridinolysis of Diisopropyl Chlorothiophosphate in Acetonitrile vol.33, pp.10, 2011, https://doi.org/10.5012/bkcs.2012.33.10.3203
  12. Linear free energy relationship and deuterium kinetic isotope effect observed on phospho and thiophosphoryl transfer reactions in some organophosphorous compounds vol.495, pp.1, 2014, https://doi.org/10.1088/1742-6596/495/1/012004