DOI QR코드

DOI QR Code

Mannich-type Reactions of in Situ Generated N-Acyliminium Ions from α-Amido p-Tolylsulfones with Silyl Enolates

  • Lee, Sang-Hyeup (Department of Life Chemistry, Catholic University of Daegu) ;
  • Kadam, Santosh T. (Department of Life Chemistry, Catholic University of Daegu)
  • Received : 2011.07.06
  • Accepted : 2011.08.30
  • Published : 2011.10.20

Abstract

Bismuth tribromide ($BiBr_3$) catalyzed Mannich-type reactions of N-acyliminium ions which generated in situ from N-benzyloxycarbonylamino p-tolylsulfones have been developed. In the presence of catalytic amount of $BiBr_3$, N-benzyloxycarbonylamino p-tolylsulfones prepared from aromatic and aliphatic aldehydes reacted with silyl enol ether and silyl enol ester under mild reaction conditions to afford N-Cbz-protected ${\beta}$-amino ketones and N-Cbz-protected ${\beta}$-amino esters in moderate to good yield, respectively.

Keywords

References

  1. Cordova, A. Acc. Chem. Res. 2004, 37, 102. https://doi.org/10.1021/ar030231l
  2. Kobayashi, S.; Sugiura, M.; Kitagawa, H.; Lam, W. W.-L. Chem. Rev. 2002, 102, 2227. https://doi.org/10.1021/cr010289i
  3. Kobayshi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069. https://doi.org/10.1021/cr980414z
  4. Benaglia, M.; Cinquini, M.; Cozzi, F. Eur. J. Org. Chem. 2000, 4, 563.
  5. Marques, M. M. B. Angew. Chem., Int. Ed. 2006, 45, 348. https://doi.org/10.1002/anie.200502630
  6. Verkade, J. M. M.; van Hemert, L. J. C.; Quaedflieg, P. J. L. M.; Rutjes, F. P. J. T. Chem. Soc. Rev. 2008, 37, 29. https://doi.org/10.1039/b713885g
  7. Ting, A.; Schaus, S. E. Eur. J. Org. Chem. 2007, 5797.
  8. Sibi, M. P.; Asano, Y. J. Am. Chem. Soc. 2001, 123, 9708. https://doi.org/10.1021/ja016492c
  9. Myers, J.; Jacobsen, E. N. J. Am. Chem. Soc. 1999, 121, 8959. https://doi.org/10.1021/ja991621z
  10. Kleinman, E. F. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Chapter 2.3, Vol. 2, p 893.
  11. Arend, M.; Westermann, B.; Risch, N. Angew. Chem., Int. Ed. 1998, 37, 1044. https://doi.org/10.1002/(SICI)1521-3773(19980504)37:8<1044::AID-ANIE1044>3.0.CO;2-E
  12. Juaristi, E.; Soloshonok, V. A. Enantioselective Synthesis of $\beta$-Amino Acids; Wiley: New York, 2005.
  13. Salter, M. M.; Kobayashi, J.; Shimiue, Y.; Kobayashi, S. Org. Lett. 2006, 8, 3533. https://doi.org/10.1021/ol0613012
  14. Benjamin, L. J. Am. Chem. Soc. 2000, 122, 9336 https://doi.org/10.1021/ja001923x
  15. Benjamin, L.; Pojarliev, P.; Biller, W. T.; Martin, H. J. J. Am. Chem. Soc. 2002, 124, 827. https://doi.org/10.1021/ja0174231
  16. Azizi, N.; Torkiyan, L.; Saidi, M. R. Org. Lett. 2006, 8, 2079. https://doi.org/10.1021/ol060498v
  17. Wang, R.; Li, B.; Huang, T.; Shi, L.; Lu, X. Tetrahedron Lett. 2007, 48, 2071. https://doi.org/10.1016/j.tetlet.2007.01.142
  18. Ollevier, T.; Nadeau, E. J. Org. Chem. 2004, 69, 9292. https://doi.org/10.1021/jo048617c
  19. Suto, Y.; Kani, M.; Shibasaki, M. J. Am. Chem. Soc. 2007, 129, 500. https://doi.org/10.1021/ja068226a
  20. Lee, S.- H.; Lee, B. S. Bull. Korean Chem. Soc. 2009, 30, 551. https://doi.org/10.5012/bkcs.2009.30.3.551
  21. Wang, R.; Huang, T.; Shi, L.; Li, B.; Lu, X. Synlett 2007, 2197.
  22. Das, B.; Majhi, A.; Reddy, K. R.; Suneel, K. J. Mol. Catal. A: Chem. 2007, 274, 83. https://doi.org/10.1016/j.molcata.2007.04.027
  23. Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004, 43, 1566. https://doi.org/10.1002/anie.200353240
  24. Wenzel, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 12965.
  25. Koyabashi, S.; Ishitani, H.; Yamashita, Y.; Uneo, M.; Shimizu, H. Tetrahedron 2001, 57, 861. https://doi.org/10.1016/S0040-4020(00)01038-3
  26. Ganzalez, A. S.; Arrayas, R. G.; Carretero, J. C. Org. Lett. 2006, 8, 2977. https://doi.org/10.1021/ol060866v
  27. Loh, T.-P.; Liung, S. B. K. W.; Tan, K.-L.; Wei, L.-L. Tetrahedron 2000, 56, 3227. https://doi.org/10.1016/S0040-4020(00)00221-0
  28. Josephsohn, N. S.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126, 3734. https://doi.org/10.1021/ja049388e
  29. Taylor, M. S.; Tokunaga, N.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2005, 44, 6700. https://doi.org/10.1002/anie.200502277
  30. Trost, B. M.; Jaratjaroonphong, J.; Reutrakul, V. J. Am. Chem. Soc. 2006, 128, 2778. https://doi.org/10.1021/ja057498v
  31. Ollevier, T.; Nadeau, E. Org. Biomol. Chem. 2007, 5, 3126. https://doi.org/10.1039/b710794c
  32. Das, B.; Balasubramanyam, P.; Veeranjaneyulu, B.; Reddy, G. C. J. Org. Chem. 2009, 74, 9505. https://doi.org/10.1021/jo901982n
  33. Kobayashi, S.; Iwamoto, S.; Nagayama, S. Synlett 1997, 1099.
  34. Matsuo, J.-I.; Tanaki, Y.; Ishibashi, H. Org. Lett. 2006, 8, 4371. https://doi.org/10.1021/ol0618095
  35. Layer, R. W. Chem. Rev. 1963, 63, 489. https://doi.org/10.1021/cr60225a003
  36. Song, J.; Shin, H.- W.; Deng, L. Org. Lett. 2007, 9, 603. https://doi.org/10.1021/ol062837q
  37. Mecozzi, T.; Petrini, M. J. Org. Chem. 1999, 64, 8970. https://doi.org/10.1021/jo9911544
  38. Petrini, M. Chem. Rev. 2005, 105, 3949. https://doi.org/10.1021/cr050528s
  39. Petrini, M.; Torregiani, E. Synthesis 2007, 159.
  40. Cihalova, S.; Reme, M.; Cisaova, I.; Vesely, J. Eur. J. Org. Chem. 2009, 6277.
  41. Kadam, S. T.; Thirupathi, P.; Kim, S. S. Tetrahedron 2010, 66, 1684. https://doi.org/10.1016/j.tet.2010.01.010
  42. Das, B.; Damodar, K.; Bhunia, N. J. Org. Chem. 2009, 74, 5607. https://doi.org/10.1021/jo900558d
  43. Thirupathi, P.; Kim, S. S. J. Org. Chem. 2009, 74, 7755. https://doi.org/10.1021/jo9014613
  44. Thirupathi, P.; Kim, S. S. Eur. J. Org. Chem. 2010, 1798.
  45. Das, B.; Reddy G. C.; Balasubramanyam, P.; Veeranjaneyulu, B. Synthesis 2010, 2057.
  46. Kadam, S. T.; Kim, S. S. Tetrahedron 2010, 66, 5647. https://doi.org/10.1016/j.tet.2010.05.075
  47. Ollevier, T.; Nadeau, E.; Eguillon, J.-C. Adv. Synth. Catal. 2006, 348, 2080. https://doi.org/10.1002/adsc.200606222
  48. Ballini, R.; Plamieri, A.; Petrini, A.; Torregiani, E. Org. Lett. 2006, 8, 4093. https://doi.org/10.1021/ol061604w
  49. Gianelli, C.; Sambri, L.; Carlone, A.; Bartoli, G.; Melchiorre, P. Angew. Chem., Int. Ed. 2008, 47, 8700. https://doi.org/10.1002/anie.200803819
  50. Anastas, P.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford University Press: Oxford, 1998.
  51. Suzuki, H.; Matano, Y. Organobismuth Chemistry; Ed. Elsevier: Amsterdam, 2001.
  52. Reglinski, J. In Chemisrty of Arsenic, Antimony and Bismuth; Norman, C. N., Ed.; Blacki Academic and professional: New York, 1998; p 403.
  53. Komatsu, N.; Ishida, J.; Suzuki, H. Tetrahedron Lett. 1997, 38, 7219. https://doi.org/10.1016/S0040-4039(97)01720-6
  54. Ollevier, T.; Li, Z. Eur. J. Org. Chem. 2007, 34, 5665.
  55. Ollevier, T.; Tuya, B. Tetrahedron Lett. 2003, 44, 9003. https://doi.org/10.1016/j.tetlet.2003.09.221
  56. Kadam, S. T.; Kim, S. S. J. Organometal. Chem. 2009, 694, 2562. https://doi.org/10.1016/j.jorganchem.2009.04.001
  57. Yadav, J. S.; Reddy, B. V. S.; Parimala, G.; Raju, A. K. Tetrahedron Lett. 2004, 45, 1543. https://doi.org/10.1016/j.tetlet.2003.12.043

Cited by

  1. Mild and Efficient Tris(pentafluorophenyl)borane-catalyzed Sakurai Allylation of N-Benzyloxycarbonylamino p-Tolylsulfone with Allyltrimethylsilane vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1275
  2. ChemInform Abstract: Mannich-Type Reactions of in situ Generated N-Acyliminium Ions from α-Amido p-Tolylsulfones with Silyl Enolates. vol.43, pp.9, 2012, https://doi.org/10.1002/chin.201209041
  3. -Boc-Amino Sulfones vol.135, pp.41, 2013, https://doi.org/10.1021/ja408747m