Principles and Technical Aspects of Perfusion Magnetic Resonance Imaging

관류 자기공명영상의 원리 및 기술

  • Jahng, Geon-Ho (Department of Radiology, Kyung Hee University Hospital-Gangdong, School of Medicine, Kyung Hee University) ;
  • Kim, Ho-Sung (Department of Radiology, Asan Medical Center, School of Medicine, Ulsan University) ;
  • Kim, Sun-Mi (Department of Radiology, Kyung Hee University Hospital-Gangdong, School of Medicine, Kyung Hee University) ;
  • Ryu, Chang-Woo (Department of Radiology, Kyung Hee University Hospital-Gangdong, School of Medicine, Kyung Hee University)
  • 장건호 (경희대학교 의과대학 강동경희대학교병원 영상의학과) ;
  • 김호성 (울산대학교 의과대학 서울아산병원 영상의학과) ;
  • 김선미 (경희대학교 의과대학 강동경희대학교병원 영상의학과) ;
  • 류창우 (경희대학교 의과대학 강동경희대학교병원 영상의학과)
  • Received : 2011.04.05
  • Accepted : 2011.06.30
  • Published : 2011.08.31

Abstract

Perfusion magnetic resonance imaging (pMRI) is a special technique for evaluation of blood flow. Exogenous pMRI methods which are dynamic susceptibility contrast (DSC) and dynamic contrast-enhanced (DCE) use an intravenous bolus injection of paramagnetic contrast agent. In contrast, an endogenous pMRM method which is arterial spin labeling (ASL) use diffusible blood in body. In order to scan pMRI in human, technical optimizations are very important according to disease conditions. For examples, DSC is popularly used in patients with acute stroke due to its short scan time, while DSC or DCE provides the various perfusion indices for patients with tumor. ASL is useful for children, women who are expected to be pregnant, and in patients with kidney diseases which are problematic in nephrogenic systemic fibrosis (NSF). Perfusion MRI does not require any injection of radioisotopes. We expect that demand for perfusion MRI will be higher in evaluating drug efficacy and other treatment effects.

관류 자기공명영상은 크게 외인성과 내인성 조영제를 사용하는 방법으로 나눌 수 있고, 외인성 조영제를 사용하는 방법으로는 DSC 와 DCE 방법이 있으며, 내인성 조영제를 사용하는 방법으로는 ASL 이 있다. 이들 관류 자기공명영상 방법들은 환자의 상태와 나타내고자 하는 영상인자에 따라 선별적으로 최적화되어 사용되어야 한다. 그 예로 급성 뇌졸중 환자의 경우 매우 빠른 영상획득이 최우선적인 인자이므로 DSC 가 주로 이용되고 있고, 뇌종양 환자의 경우 여러 물리적 인자를 고려한 DSC 혹은 DCE 스캔이 필요하다. 또한 소아나 가임여성 및 신장병질환이 있는 경우는 ASL 을 이용되고 있다. 관류 자기공명영상 기술은 방사성 물질을 전혀 사용하지 않아 약물효과의 평가와 기타 치료 효과를 이해하는데 많은 응용이 있을 것으로 생각된다.

Keywords

References

  1. Barbier EL, Lamalle L, Decorps M. Methodology of brain perfusion imaging. J Magn Reson Imaging 2001;13:496-520 https://doi.org/10.1002/jmri.1073
  2. Brown GG, Clark C, Liu TT. Measurement of cerebral perfusion with arterial spin labeling: Part 2. Applications. J Int Neuropsychol Soc 2007;13:526-538
  3. Rosen BR, Belliveau JW, Vevea JM, Brady TJ. Perfusion imaging with NMR contrast agents. Magn Reson Med 1990;14:249-265 https://doi.org/10.1002/mrm.1910140211
  4. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 1990;87:9868-9872 https://doi.org/10.1073/pnas.87.24.9868
  5. van Osch MJ, Vonken EJ, Viergever MA, van der Grond J, Bakker CJ. Measuring the arterial input function with gradient echo sequences. Magn Reson Med 2003;49:1067-1076 https://doi.org/10.1002/mrm.10461
  6. Johnson G, Wetzel SG, Cha S, Babb J, Tofts PS. Measuring blood volume and vascular transfer constant from dynamic, $T(2)^{\ast}$-weighted contrast-enhanced MRI. Magn Reson Med 2004;51:961-968 https://doi.org/10.1002/mrm.20049
  7. Fritz-Hansen T, Rostrup E, Larsson HB, Sondergaard L, Ring P, Henriksen O. Measurement of the arterial concentration of Gd-DTPA using MRI: a step toward quantitative perfusion imaging. Magn Reson Med 1996;36:225-231 https://doi.org/10.1002/mrm.1910360209
  8. Bleeker EJ, van Buchem MA, Webb AG, van Osch MJ. Phasebased arterial input function measurements for dynamic susceptibility contrast MRI. Magn Reson Med 2010;64:358-368 https://doi.org/10.1002/mrm.22420
  9. van Osch MJ, Vonken EJ, Bakker CJ, Viergever MA. Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI. Magn Reson Med 2001;45:477-485 https://doi.org/10.1002/1522-2594(200103)45:3<477::AID-MRM1063>3.0.CO;2-4
  10. van Osch MJ, van der Grond J, Bakker CJ. Partial volume effects on arterial input functions: shape and amplitude distortions and their correction. J Magn Reson Imaging 2005;22:704-709 https://doi.org/10.1002/jmri.20455
  11. Calamante F, Morup M, Hansen LK. Defining a local arterial input function for perfusion MRI using independent component analysis. Magn Reson Med 2004;52:789-797 https://doi.org/10.1002/mrm.20227
  12. Calamante F, Gadian DG, Connelly A. Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 2000;44:466-473 https://doi.org/10.1002/1522-2594(200009)44:3<466::AID-MRM18>3.0.CO;2-M
  13. Alsop DC, Wedmid A, Schlaug G. Defining a local input function for perfusion quantification with bolus contrast MRI. 2002; Honolulu, Hawaii p659
  14. Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn Reson Med 1996;36:715-725 https://doi.org/10.1002/mrm.1910360510
  15. Wu O, Ostergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG. Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med 2003;50:164-174 https://doi.org/10.1002/mrm.10522
  16. Smith MR, Lu H, Trochet S, Frayne R. Removing the effect of SVD algorithmic artifacts present in quantitative MR perfusion studies. Magn Reson Med 2004;51:631-634 https://doi.org/10.1002/mrm.20006
  17. Vonken EP, Beekman FJ, Bakker CJ, Viergever MA. Maximum likelihood estimation of cerebral blood flow in dynamic susceptibility contrast MRI. Magn Reson Med 1999;41:343-350 https://doi.org/10.1002/(SICI)1522-2594(199902)41:2<343::AID-MRM19>3.0.CO;2-T
  18. Chen JJ, Smith MR, Frayne R. Advantages of frequency-domain modeling in dynamic-susceptibility contrast magnetic resonance cerebral blood flow quantification. Magn Reson Med 2005;53:700-707 https://doi.org/10.1002/mrm.20382
  19. Lupo JM, Cha S, Chang SM, Nelson SJ. Dynamic susceptibility-weighted perfusion imaging of high-grade gliomas: characterization of spatial heterogeneity. AJNR Am J Neuroradiol 2005;26:1446-1454
  20. Cha S, Lupo JM, Chen MH, Lamborn KR, McDermott MW, Berger MS, Nelson SJ, Dillon WP. Differentiation of glioblastoma multiforme and single brain metastasis by peak height and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 2007;28:1078-1084 https://doi.org/10.3174/ajnr.A0484
  21. Tofts PS, Kermode AG. Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 1991;17:357-367 https://doi.org/10.1002/mrm.1910170208
  22. Choyke PL, Dwyer AJ, Knopp MV. Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging. J Magn Reson Imaging 2003;17:509-520 https://doi.org/10.1002/jmri.10304
  23. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB, Lee TY, Mayr NA, Parker GJ, Port RE, Taylor J, Weisskoff RM. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999;10:223-232 https://doi.org/10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S
  24. Patankar TF, Haroon HA, Mills SJ, Baleriaux D, Buckley DL, Parker GJ, Jackson A. Is volume transfer coefficient (K(trans)) related to histologic grade in human gliomas? AJNR Am J Neuroradiol 2005;26:2455-2465
  25. Tofts PS, Berkowitz B, Schnall MD. Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumors using a permeability model. Magn Reson Med 1995;33:564-568 https://doi.org/10.1002/mrm.1910330416
  26. Harrer JU, Parker GJ, Haroon HA, Buckley DL, Embelton K, Roberts C, Baleriaux D, Jackson A. Comparative study of methods for determining vascular permeability and blood volume in human gliomas. J Magn Reson Imaging 2004;20:748-757 https://doi.org/10.1002/jmri.20182
  27. Detre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging. Magn Reson Med 1992;23:37-45 https://doi.org/10.1002/mrm.1910230106
  28. Edelman RR, Chen Q. EPISTAR MRI: multislice mapping of cerebral blood flow. Magn Reson Med 1998;40:800-805 https://doi.org/10.1002/mrm.1910400603
  29. Golay X, Stuber M, Pruessmann KP, Meier D, Boesiger P. Transfer insensitive labeling technique (TILT): application to multislice functional perfusion imaging. J Magn Reson Imaging 1999;9:454-461 https://doi.org/10.1002/(SICI)1522-2586(199903)9:3<454::AID-JMRI14>3.0.CO;2-B
  30. Kim SG, Tsekos NV. Perfusion imaging by a flow-sensitive alternating inversion recovery (FAIR) technique: application to functional brain imaging. Magn Reson Med 1997;37:425-435 https://doi.org/10.1002/mrm.1910370321
  31. Kwong KK, Chesler DA, Weisskoff RM, Donahue KM, Davis TL, Ostergaard L, Campbell TA, Rosen BR. MR perfusion studies with T1-weighted echo planar imaging. Magn Reson Med 1995;34:878-887 https://doi.org/10.1002/mrm.1910340613
  32. Wong EC, Buxton RB, Frank LR. Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 1997;10:237-249 https://doi.org/10.1002/(SICI)1099-1492(199706/08)10:4/5<237::AID-NBM475>3.0.CO;2-X
  33. Wong EC, Buxton RB, Frank LR. Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 1998;39:702-708 https://doi.org/10.1002/mrm.1910390506
  34. Alsop DC, Detre JA. Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 1996;16:1236-1249
  35. Alsop DC, Detre JA. Multisection cerebral blood flow MR imaging with continuous arterial spin labeling. Radiology 1998;208:410-416
  36. Detre JA, Zhang W, Roberts DA, Silva AC, Williams DS, Grandis DJ, Koretsky AP, Leigh JS. Tissue specific perfusion imaging using arterial spin labeling. NMR Biomed 1994;7:75-82 https://doi.org/10.1002/nbm.1940070112
  37. Wong EC, Cronin M, Wu WC, Inglis B, Frank LR, Liu TT. Velocity-selective arterial spin labeling. Magn Reson Med 2006;55:1334-1341 https://doi.org/10.1002/mrm.20906
  38. Duhamel G, de Bazelaire C, Alsop DC. Evaluation of systematic quantification errors in velocity-selective arterial spin labeling of the brain. Magn Reson Med 2003;50:145-153 https://doi.org/10.1002/mrm.10510
  39. Edelman RR, Siewert B, Darby DG, Thangaraj V, Nobre AC, Mesulam MM, Warach S. Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology 1994;192:513-520
  40. Kao YH, Wan X, MacFall JR. Simultaneous multislice acquisition with arterial-flow tagging (SMART) using echo planar imaging (EPI). Magn Reson Med 1998;39:662-665 https://doi.org/10.1002/mrm.1910390422
  41. Helpern JA, Branch CA, Yongbi MN, Huang NC. Perfusion imaging by un-inverted flow-sensitive alternating inversion recovery (UNFAIR). Magn Reson Imaging 1997;15:135-139 https://doi.org/10.1016/S0730-725X(96)00353-0
  42. Keilholz-George SD, Knight-Scott J, Berr SS. Theoretical analysis of the effect of imperfect slice profiles on tagging schemes for pulsed arterial spin labeling MRI. Magn Reson Med 2001;46:141-148 https://doi.org/10.1002/mrm.1169
  43. Schwarzbauer C, Heinke W. BASE imaging: a new spin labeling technique for measuring absolute perfusion changes. Magn Reson Med 1998;39:717-722 https://doi.org/10.1002/mrm.1910390508
  44. Berr SS, Mai VM. Extraslice spin tagging (EST) magnetic resonance imaging for the determination of perfusion. J Magn Reson Imaging 1999;9:146-150 https://doi.org/10.1002/(SICI)1522-2586(199901)9:1<146::AID-JMRI19>3.0.CO;2-C
  45. Jahng GH, Zhu XP, Matson GB, Weiner MW, Schuff N. Improved perfusion-weighted MRI by a novel double inversion with proximal labeling of both tagged and control acquisitions. Magn Reson Med 2003;49:307-314 https://doi.org/10.1002/mrm.10339
  46. Jahng GH, Weiner MW, Schuff N. Improved arterial spin labeling method: applications for measurements of cerebral blood flow in human brain at high magnetic field MRI. Med Phys 2007;34:4519-4525 https://doi.org/10.1118/1.2795675
  47. Wong EC, Buxton RB, Frank LR. A theoretical and experimental comparison of continuous and pulsed arterial spin labeling techniques for quantitative perfusion imaging. Magn Reson Med 1998;40:348-355 https://doi.org/10.1002/mrm.1910400303
  48. Garcia DM, de Bazelaire C, Alsop DC. Pseudo-continuous flow driven adiabatic inversion for arterial spin labeling. ISMRM 2005;Miami Beach, Florida. p 37
  49. Jahng GH, Matson GB, Weiner MW, Schuff N. Improvements to control scan of ASL-perfusion MRI by improving null pulse for use with the repeated shallow flip angle excitations. ISMRM 2006;Seattle, Washington, USA. p 3433
  50. Hendrikse J, van der Grond J, Lu H, van Zijl PC, Golay X. Flow territory mapping of the cerebral arteries with regional perfusion MRI. Stroke 2004;35:882-887 https://doi.org/10.1161/01.STR.0000120312.26163.EC
  51. Davies NP, Jezzard P. Selective arterial spin labeling (SASL): perfusion territory mapping of selected feeding arteries tagged using two-dimensional radiofrequency pulses. Magn Reson Med 2003;49:1133-1142 https://doi.org/10.1002/mrm.10475
  52. Zaharchuk G, Ledden PJ, Kwong KK, Reese TG, Rosen BR, Wald LL. Multislice perfusion and perfusion territory imaging in humans with separate label and image coils. Magn Reson Med 1999;41:1093-1098 https://doi.org/10.1002/(SICI)1522-2594(199906)41:6<1093::AID-MRM4>3.0.CO;2-0
  53. Blamire AM, Styles P. Spin echo entrapped perfusion image (SEEPAGE). A nonsubtraction method for direct imaging of perfusion. Magn Reson Med 2000;43:701-704 https://doi.org/10.1002/(SICI)1522-2594(200005)43:5<701::AID-MRM12>3.0.CO;2-Y
  54. Chen Q, Siewert B, Bly BM, Warach S, Edelman RR. STARHASTE: perfusion imaging without magnetic susceptibility artifact. Magn Reson Med 1997;38:404-408 https://doi.org/10.1002/mrm.1910380308
  55. Golay X, Petersen ET, Hui F. Pulsed star labeling of arterial regions (PULSAR): a robust regional perfusion technique for high field imaging. Magn Reson Med 2005;53:15-21 https://doi.org/10.1002/mrm.20338
  56. Petersen ET, Lim T, Golay X. Model-free arterial spin labeling quantification approach for perfusion MRI. Magn Reson Med 2006;55:219-232 https://doi.org/10.1002/mrm.20784
  57. Lai S, Wang J, Jahng GH. FAIR exempting separate T (1) measurement (FAIREST): a novel technique for online quantitative perfusion imaging and multi-contrast fMRI. NMR Biomed 2001;14:507-516 https://doi.org/10.1002/nbm.738
  58. Gunther M, Bock M, Schad LR. Arterial spin labeling in combination with a look-locker sampling strategy: inflow turbosampling EPI-FAIR (ITS-FAIR). Magn Reson Med 2001;46:974-984 https://doi.org/10.1002/mrm.1284
  59. Mai VM, Berr SS. MR perfusion imaging of pulmonary parenchyma using pulsed arterial spin labeling techniques: FAIRER and FAIR. J Magn Reson Imaging 1999;9:483-487 https://doi.org/10.1002/(SICI)1522-2586(199903)9:3<483::AID-JMRI18>3.0.CO;2-#
  60. Zhou J, Mori S, van Zijl PC. FAIR excluding radiation damping (FAIRER). Magn Reson Med 1998;40:712-719 https://doi.org/10.1002/mrm.1910400511
  61. Luh WM, Wong EC, Bandettini PA, Hyde JS. QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med 1999;41:1246-1254 https://doi.org/10.1002/(SICI)1522-2594(199906)41:6<1246::AID-MRM22>3.0.CO;2-N
  62. Ye FQ, Frank JA, Weinberger DR, McLaughlin AC. Noise reduction in 3D perfusion imaging by attenuating the static signal in arterial spin tagging (ASSIST). Magn Reson Med 2000;44:92-100 https://doi.org/10.1002/1522-2594(200007)44:1<92::AID-MRM14>3.0.CO;2-M
  63. Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB. Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model. Magn Reson Med 1999;42:849-863 https://doi.org/10.1002/(SICI)1522-2594(199911)42:5<849::AID-MRM4>3.0.CO;2-Z
  64. Liu TT, Wong EC. A signal processing model for arterial spin labeling functional MRI. Neuroimage 2005;24:207-215 https://doi.org/10.1016/j.neuroimage.2004.09.047