DOI QR코드

DOI QR Code

연료전지(燃料電池) 막전극접합체(膜電極接合體)의 막분리(膜分離) 및 백금(白金) 회수(回收)에 관(關)한 연구(硏究)

Experimental Study for Separation of Membrane and Recovery of Platinum from MEA

  • 이진아 (한국화학연구원 에너지소재센터) ;
  • 강석민 (한국화학연구원 에너지소재센터) ;
  • 유성열 (한국화학연구원 에너지소재센터) ;
  • 강홍윤 (한국생산기술연구원 자원순환기술지원센터) ;
  • 류호진 (한국화학연구원 에너지소재센터)
  • Lee, Jin-A (Korean Research Institute of Chemical Technology, Energy Materials Research Center) ;
  • Kang, Suk-Min (Korean Research Institute of Chemical Technology, Energy Materials Research Center) ;
  • Yoo, Sung-Yeol (Korean Research Institute of Chemical Technology, Energy Materials Research Center) ;
  • Kang, Hong-Yoon (Korea Institute of Industrial Technology, Center for Resources Information and Management) ;
  • Ryu, Ho-Jin (Korean Research Institute of Chemical Technology, Energy Materials Research Center)
  • 투고 : 2011.04.11
  • 심사 : 2011.07.11
  • 발행 : 2011.08.31

초록

본 논문에서는 초음파나 교반 없이 전해질막과 확산층을 분리하기위한 새로운 방법에 대해 연구하였다. 증류수, 부탄올, 계면활성제를 이용하여 연료전지 막전극접합체의 전해질막과 확산층을 침지법으로 촉매입자의 분산 없이 분리하였다. 또한 분리된 확산층의 촉매와 연료전지 Pt/C 촉매를 왕수에서 $80{\sim}85^{\circ}C$로 가열하여 촉매입자를 녹여 침전제를 첨가하였다. 이후 소성하여 백긍 금속을 회수하였고 이는 새로운 연료전지용 전극촉매를 만드는데 사용될 것이다.

Present paper reports a new method to separate the electrolyte membranes and carbon paper without using ultrasonic waves and stirring. In this method, these were separated from fuel cell membrane-electrode assembly(MEA) using the distilled water, butanol and surfactant by dipping method without the dispersion of catalyst particles. Separated carbon paper catalysts and fuel cell Pt/C catalysts were heated in aqua regia at $80{\sim}85^{\circ}C$ and added to precipitant. After calcination, Pt metal was recovered which might be used in fabricating new fuel cells.

키워드

참고문헌

  1. Jin Young, Lee, et al., 2010: Solvent extraction separation and recovery of palladium and platinum from chloride leach liquors of spent automobile catalyst, Separation and Purification Technology, 73, pp. 213-218. https://doi.org/10.1016/j.seppur.2010.04.003
  2. Jae-chun, Lee, et al., 2004: Recovery of platinum group metals from spent automotive catalysts by hydrochloric acid leaching, Journal of Korean Institute of Resources Recycling, 13(5), pp. 28-36.
  3. Ticianelli, E. A., et al., 1988: Methods to advance technology of proton exchange membrane fuel cells, Journal of The Electrochemical Society, 135(9), pp. 2209-2214. https://doi.org/10.1149/1.2096240
  4. Ren, X., et al., 2000: Recent advances in direct methanol fuel cells at Los Alamos National Laboratory, Journal of Power Sources, 86, pp. 111-116. https://doi.org/10.1016/S0378-7753(99)00407-3
  5. Zhang, J., et al., 2006: Effects of MEA preparation on the performance of a direct methanol fuel cell, Journal of Power Sources, 160, pp. 1035-1040. https://doi.org/10.1016/j.jpowsour.2006.02.059
  6. Wilson, M. S., Valerio, J. A., Gottesfeld, S., 1995: Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers, Electrochimica Acta, 40, pp. 355-363. https://doi.org/10.1016/0013-4686(94)00272-3
  7. Segoo, Kang, et al., 2009: Characterization and performance of MEA for direct methanol fuel cell prepared with PFA grafted polystyrene membranes via radiation-grafting method, Journal of the Korean Electrochemical Society, 12(2), pp. 173-180. https://doi.org/10.5229/JKES.2009.12.2.173
  8. Randava, A., et al., 2008: Swelling of Nafion in methanol-water-inorganic salt ternary mixtures, Journal of Electroanalytical Chemistry, 616, pp. 117-121. https://doi.org/10.1016/j.jelechem.2007.12.018
  9. In Sook, Kang, Sun Young, Jung, 2004: Effect of Electrokinetic phenomena on the dispersion stability of particles in anionic/nonionic surfactant mixed solution, Journal of the Korean Fiber Society, 41(6), pp. 476-482.
  10. Hogg, R., Healy, T. W., Ferstenau, D. W., 1966: Mutual coagulation of colloidal dispersion, Transactions of the Faraday Society, 62, pp. 1638-1642. https://doi.org/10.1039/tf9666201638