DOI QR코드

DOI QR Code

An Enhanced Scheme of Target Coverage Scheduling m Rotatable Directional Sensor Networks

회전 가능한 방향센서네트워크에서 타겟 커버리지 스케줄링 향상 기법

  • 김찬명 (한국기술교육대학교 컴퓨터공학부 첨단기술연구소) ;
  • 한연희 (한국기술교육대학교 컴퓨터공학부 첨단기술연구소) ;
  • 길준민 (대구가톨릭대학교 컴퓨터정보통신공학부)
  • Received : 2011.06.22
  • Accepted : 2011.08.09
  • Published : 2011.08.31

Abstract

In rotatable directional sensor networks, maximizing network lifetime while covering all the targets and forwarding the sensed data to the sink is a challenge problem. In this paper, we address the Maximum Directional Cover Tree (MDCT) problem of organizing the directional sensors into a group of non-disjoint subsets to extend the network lifetime. Each subset in which the directional sensors cover all the targets and forward the sensed data to the sink is activated at one time. For the MDCT problem, we first present an energy consumption model which mainly takes into account the energy consumption for rotation work. We also develop the Directional Coverage and Connectivity (DCC)-greedy algorithm to solve the MDCT problem. To evaluate the algorithm, we conduct simulations and show that it can extend the network lifetime.

방향센서네트워크에서 주어진 모든 타켓을 관측하고 관측한 데이터를 싱크노드까지 전달한다는 요구사항을 유지하면서 에너지를 효율적으로 절약하여 전체 네트워크 수명을 최대화하는 것은 중요한 문제이다. 본 논문에서는 이와 관련하여 Maximum Directional Cover Tree(MDCT) 문제를 제시하고 방향센서들을 그룹화하여 네트워크 수명을 최대화하는 문제를 다룬다. 모든 타켓을 관측하고 관측한 데이터를 싱크노드까지 전달하는데 참여하는 센서들을 활성상태로 설정하고 그렇지 않은 센서들은 수면상태로 설정함으로써 에너지를 효율적으로 활용할 수 있는 휴리스틱 알고리즘인 Directional Coverage and Connectivity (DCC)-greedy 알고리즘을 제시하여 MDCT문제를 해결한다. 제안 알고리즘에서는 타켓을 관측하고 관측한 데이터 전달에 드는 에너지 외에 방향 회전에너지까지 고려함으로써 방향센서가 소비하는 에너지를 좀 더 정확하게 고려한다 마지막으로 시뮬레이션을 통해 제안 알고리즘이 네트워크 수명을 증가시킬 수 있음을 보인다.

Keywords

References

  1. I.F. Akyildiz,T. Melodia and K. Chowdhury, "A survey on wireless multimedia sensor networks," Computer Networks, 51, pp.921-960, 2007. https://doi.org/10.1016/j.comnet.2006.10.002
  2. V. Raghunathan, C. Schurgers, S. Park, and M. B. Srivastava, "Energy-Aware Wireless Microsensor Networks," IEEE Signal Processing Magazine, 19 , pp.40-50, 2002. https://doi.org/10.1109/79.985679
  3. M. Rahimi, R. Baer, O. Iroezi, J. Garcia, J. Warrior, D. Estrin and M. Srivastava, "Cyclops: In Situ Image Sensing and Interpretation in Wireless Sensor Networks," Proc. ACM Conf. Embedded Networked Sensor Systems, 2005.
  4. H. Ma and Y. Liu, "On Coverage Problems of Directional Sensor Networks," The First Int. Conf. on Mobile Ad-hoc and Sensor Networks, pp.721-731, 2005.
  5. J. Ai and A.A. Abouzeid, "Coverage by Directional Sensors in Randomly Deployed Wireless Sensor Networks," Journal of Combinatorial Optimization, 11, pp.21-41, 2006. https://doi.org/10.1007/s10878-006-5975-x
  6. J. Wang, C. Niu and R. Shen, "Priority-based Target Coverage in Directional Sensor Networks Using a Genetic Algorithm," Computers and Mathematics with Applications, 57, pp.1915-1922, 2009. https://doi.org/10.1016/j.camwa.2008.10.019
  7. G. Fusco and H. Gupta, "Placement and Orientation of Rotating Directional Sensors," 7th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON '10), pp.332-340, 2010.
  8. C.F. Huang amd Y.C. Tseng, "A Survey of Solutions to The Coverage Problems in Wireless Sensor Networks," Journal of Internet Technology, 6, pp.1-8, 2005.
  9. M. Cardei and D.Z. Du, "Improving Wireless Sensor Network Lifetime through Power Aware Organization." Wireless Networks, 11, pp.333-340, 2005 https://doi.org/10.1007/s11276-005-6615-6
  10. M. Cardei, M.T. Thai, Y. Li and W. Wu, "Energy-efficient Target Coverage in Wireless Sensor Networks," IEEE Infocom, pp. 1976-1984, 2005.
  11. Q. Zhao and M. Gurusamy, "Lifetime Maximization for Connected Target Coverage in Wireless Sensor Networks," IEEE/ACM Transactions on Networking, 16, 2007.

Cited by

  1. Expert recommendation system based on analyzing expertise and networks of human resources in National Science & Technology Information Service vol.20, pp.8, 2013, https://doi.org/10.1007/s11771-013-1726-1