References
- Mata, T. M.; Martins, A. N. A.; Caetano, N. S. Renew. Sust. Energ. Rev. 2010, 14, 217-232. https://doi.org/10.1016/j.rser.2009.07.020
- Han, J.; Chan, H. W. S.; Calvin, M. J. Am. Chem. Soc. 1969, 91, 5156-5159. https://doi.org/10.1021/ja01046a037
- Blumer, M.; Guillard, R. R. L.; Chase, T. Mar. Biol. 1971, 8, 183- 189. https://doi.org/10.1007/BF00355214
- Youngblood, W. W.; Blumer, M.; Guillard, R. L.; Fiore, F. Mar. Biol. 1971, 8, 190-201. https://doi.org/10.1007/BF00355215
- Youngblood, W. W.; Blumer, M. Mar. Biol. 1973, 21, 163-172. https://doi.org/10.1007/BF00355246
- Tornabene, T. G. Experientia 1982, 38, 43-46. https://doi.org/10.1007/BF01944525
- Bhadauriya, P.; Gupta, R.; Singh, S.; Bisen, P. S. World J Microbiol Biotechnol 2008, 24, 139-141. https://doi.org/10.1007/s11274-007-9439-y
- Wackett, L. P.; Frias, J. A.; Seffernick, J. L.; Sukovich, D. J.; Cameron, S. M. Appl. Environ. Microbiol 2007, 73, 7192-7198. https://doi.org/10.1128/AEM.01785-07
- Vijayaraghavan, K.; Hemanathan, K. Energ. Fuel. 2009, 23, 5448- 5453. https://doi.org/10.1021/ef9006033
- Fedosova, S. N.; Braskb, J.; Xua, X. J. Chrom. A 2011, in press.
- Gelpi, E.; Oro, J.; Schneider, H. J.; Bennett, E. O. Science 1968, 161, 700-701. https://doi.org/10.1126/science.161.3842.700
- Schirmer, A.; Rude, M. A.; Li, X.; Popova, E.; Cardayre, S. B. D. Science 2010, 329, 559-562. https://doi.org/10.1126/science.1187936
- Mcinnes, A. G.; Walter, J. A.; Wright, J. L. C. Lipids 1979, 15, 609-615.
- Han, J.; Calvin, M. Chem. Comm. 1970, 1490-1491.
- Koster, J.; Volkman, J. K.; Rullkotter, J.; Scholz-Bottcher, B. M.; Rethmeier, J.; Fischer, U. Org. Geochem. 1999, 30, 1367-1379. https://doi.org/10.1016/S0146-6380(99)00110-2
- Winters, K.; Parker, P. L.; Baalen, C. V. Science 1969, 163, 467- 468. https://doi.org/10.1126/science.163.3866.467
- Zhu, M.; Zhou, P. P.; Yu, L. J. Bioresour. Technol. 2002, 84, 93-95. https://doi.org/10.1016/S0960-8524(02)00028-7
- Bligh, E. G.; Dyer, W. J. Can. J. Biochem. Physiol. 1959, 3, 911-917.
- Burja, A. M.; Armenta, R. E.; Radianingtyas, H.; Barrow, C. J. J. Agric. Food Chem. 2007, 55, 4795-4801. https://doi.org/10.1021/jf070412s
Cited by
- Research and development for algae-based technologies in Korea: a review of algae biofuel production vol.123, pp.3, 2015, https://doi.org/10.1007/s11120-014-9974-y
- strains isolated from shallow ephemeral freshwater in Antarctica vol.63, pp.3, 2015, https://doi.org/10.1111/pre.12097
- Isolation and description of a Korean microalga, Asterarcys quadricellulare KNUA020, and analysis of its biotechnological potential vol.27, pp.3, 2011, https://doi.org/10.4490/algae.2012.27.3.197
- Isolation of a Korean Domestic Microalga, Chlamydomonas reinhardtii KNUA021, and Analysis of Its Biotechnological Potential vol.23, pp.3, 2013, https://doi.org/10.4014/jmb.1111.11073
- Natural production of alkane by an easily harvested freshwater cyanobacterium, Phormidium autumnale KNUA026 vol.28, pp.1, 2011, https://doi.org/10.4490/algae.2013.28.1.093
- Biochemical Composition of a Korean Domestic Microalga Chlorella vulgaris KNUA027 vol.44, pp.3, 2016, https://doi.org/10.4014/mbl.1512.12008
- Effect of Different Cultivation Modes (Photoautotrophic, Mixotrophic, and Heterotrophic) on the Growth of Chlorella sp. and Biocompositions vol.9, pp.None, 2011, https://doi.org/10.3389/fbioe.2021.774143