DOI QR코드

DOI QR Code

Simultaneous Determination of B Group Vitamins in Supplemented Food Products by High Performance Liquid Chromatography-Diode Array Detection

  • Suh, Joon-Hyuk (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University) ;
  • Yang, Dong-Hyug (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University) ;
  • Lee, Byung-Kyu (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University) ;
  • Eom, Han-Young (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University) ;
  • Kim, Un-Yong (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University) ;
  • Kim, Jung-Hyun (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University) ;
  • Lee, Hye-Yeon (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University) ;
  • Han, Sang-Beom (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University)
  • Received : 2011.05.12
  • Accepted : 2011.06.26
  • Published : 2011.08.20

Abstract

A simple HPLC-DAD method was developed and validated to determine B group vitamin content (thiamine, riboflavin, nicotinamide, pantothenic acid, pyridoxine and folic acid) in supplemented food samples, i.e., infant formula, cereal, low-calorie food, a multi-vitamin pill and a vitamin drink. In this study, the most significant advantages were simultaneous determination of the six B group vitamins in various food matrices and a small number of sample treatment steps that required only an organic solvent, acetonitrile. Moreover, this method prevents reduction of column durability, because the mobile phase does not contain ion-pairing reagents. Analytes were separated on a Develosil RPAQUEOUS $C_{30}$ (4.6 mm ${\times}$ 250 mm, 5 ${\mu}M$ particle size) column with a gradient elution of acetonitrile and 20 mM phosphate buffer (pH 3.0) at a flow rate between 0.8 and 1.0 mL/min. Detection was performed at 275 nm, except for that of pantothenic acid (205 nm). The calibration curves for all six vitamins showed good linearity with correlation coefficients ($r^2$) higher than 0.995. The developed method was validated with respect to linearity, intra- and inter-day accuracy and precision, limit of quantification (LOQ), recovery and stability. The method showed good precision and accuracy, with intra- and inter-assay coefficients of variation less than 15% at all concentrations. The recovery was carried out according to the standard addition procedure, with yields ranging from 89.8 to 104.4%. This method was successfully applied to the determination of vitamin B groups in supplemented food products.

Keywords

References

  1. Southon, S.; Wright, A. J. A.; Finglas, P. M.; Bailey, A. L.; Loughridge, J. M.; Walker, A. D. Brit. J. Nutr. 1994, 71, 897. https://doi.org/10.1079/BJN19940195
  2. Gilpin, R. K.; Pachla, L. A. Anal. Chem. 2003, 75, 2907. https://doi.org/10.1021/ac030151v
  3. Penna, D. D. Science 1999, 285, 375. https://doi.org/10.1126/science.285.5426.375
  4. Blinkhorn, S. Nature 1991, 6313, 13.
  5. Combs, G. F. Jr. Vitamins: Fundamental Aspects in Nutrition and Health; Academic Press: San Diego, 2nd ed., 1998.
  6. Bernard, M. A.; Nakonezny, P. A.; Kashner, T. M. J. Am. Geriatr. Soc. 1998, 46, 1199.
  7. Moreno, P.; Salvado, V. J. Chromatogr. A 2000, 870, 207. https://doi.org/10.1016/S0021-9673(99)01021-3
  8. Konings, E. J. Assoc. Off. Anal. Chem. Int. 2006, 89, 85.
  9. Konings, E. J. Assoc. Off. Anal. Chem. Int. 2007, 90, 21B.
  10. Kall, M. A. Food Chem. 2003, 82, 315. https://doi.org/10.1016/S0308-8146(02)00568-X
  11. De Vries, J. W.; Rader, J. I.; Keagy, P. M.; Hudson, C. A. J. Assoc. Off. Anal. Chem. Int. 2005, 88, 5.
  12. Han, J. Y.; Tyler, R. T. J. Agric. Food Chem. 2003, 51, 5315. https://doi.org/10.1021/jf0211027
  13. Assoc. Off. Anal. Chem. International, Official methods of Assoc. Off. Anal. Chem. international, Gaithersburg, 18th ed., 2006.
  14. Albala-Hurtado, S.; Veciana-Nogues, M. T.; Vidal-Carou, M. C.; Marine-Font, A. J. Food. Sci. 2001, 66, 1191.
  15. Almagro, I.; San Andres, M. P.; Vera, S. Chromatographia 2002, 55, 185. https://doi.org/10.1007/BF02492140
  16. Woollard, D. C.; Indyk, H. E. J. Assoc. Off. Anal. Chem. Int. 2002, 85, 945.
  17. Albala-Hurtado, S.; Veciana-Nogues, M. T.; Izquierdo-Pulido, M.; Marine-Font, A. J. Chromatogr. A 1997, 778, 247. https://doi.org/10.1016/S0021-9673(97)00387-7
  18. Snyder, L. R.; Glajch, J. L.; Kirkland, J. J. Practical HPLC Method Development, 2nd ed.; Wiley-Interscience: New York, 1997.
  19. Analytical Methods Committee, Analyst 2000, 125, 353. https://doi.org/10.1039/a909461j
  20. Arella, F.; Lahely, S.; Bourguignon, J. B.; Hasselmann, C. Food Chem. 1996, 56, 81. https://doi.org/10.1016/0308-8146(95)00149-2
  21. La Croix, D. E.; Wolf, W. R.; Kwansa, A. L. Cereal Chem. 2005, 82, 277. https://doi.org/10.1094/CC-82-0277
  22. La Croix, D. E.; Wolf, W. R.; Chase, G. W. J. Assoc. Off. Anal. Chem. Int. 2002, 85, 654.
  23. Barnett, S. A.; Frick, L. W.; Baine, H. M. Anal. Chem. 1980, 52, 610. https://doi.org/10.1021/ac50054a003
  24. Holler, U.; Wachter, F.; Wehrli, C.; Fizet, C. J. Chromatogr. B 2006, 831, 8. https://doi.org/10.1016/j.jchromb.2005.11.021
  25. Barna, E.; Dworschak, E. J. Chromatogr. A 1994, 668, 359. https://doi.org/10.1016/0021-9673(94)80126-6
  26. Pakin, C.; Bergaentzle, M.; Hubscher, V.; Aoude-Werner, D.; Hasselmann, C. J. Chromatogr. A 2004, 1035, 87. https://doi.org/10.1016/j.chroma.2004.02.042
  27. Rose-Sallin, C.; Blake, C. J.; Genoud, D.; Tagliaferri, E. G. Food Chem. 2001, 73, 473. https://doi.org/10.1016/S0308-8146(01)00121-2
  28. Mann, D. L.; Ware, G. M.; Bonnin, E.; Eitenmiller, R. R. J. Assoc. Off. Anal. Chem. Int. 2005, 88, 30.
  29. Koontz, J. L.; Phillips, K. M.; Wunderlich, K. M.; Exler, J.; Holden, J. M.; Genhardt, S. E.; Haytowitz, D. B. J. Assoc. Off. Anal. Chem. Int. 2005, 88, 805.
  30. Tang, X.; Cronin, D. A.; Brunton, N. P. J. Food Compos. Anal. 2006, 19, 831. https://doi.org/10.1016/j.jfca.2005.12.013
  31. Zafra-Gomez, A.; Garballo, A.; Morales, J. C.; Garcia-Ayuso, L. E. J. Argic. Food Chem. 2006, 54, 4531. https://doi.org/10.1021/jf060346e
  32. Validation of Analytical Procedures, ICH-Q2A, Geneva, 1995.
  33. Vinas, P.; Lopez-Erroz, C.; Balsalobre, N.; Hernandez-Cordoba, M. J. Chromatogr. A 2003, 1007, 77. https://doi.org/10.1016/S0021-9673(03)00977-4
  34. Yoshida, H.; Mizukoshi, T.; Hirayama, K.; Miyano, H. J. Agric. Food Chem. 2007, 55, 551. https://doi.org/10.1021/jf061955p
  35. Nagae, N.; Enami, T.; Doshi, S. LCGC North America 2002, 20, 964.
  36. Wells, D. A. High Throughput Bioanalytical Sample Preparation: Methods and Automation Strategies, Elsevier Science: Amsterdam, 1st ed.; 2003.

Cited by

  1. Determination of Thiamine in Pharmaceutical Preparations by Reverse Phase Liquid Chromatography Without Use of Organic Solvent vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1745
  2. Field-amplified sample injection for the determination of isonicotinamide and nicotinamide in whitening cosmetics and supplemented foodstuffs by MEKC vol.5, pp.20, 2013, https://doi.org/10.1039/c3ay40914g
  3. Studies on Organic Acid, Vitamin and Free Sugar Contents of Commercial Dried Lavers (Porphyra yezoensis) Cultivated in Korea vol.43, pp.1, 2014, https://doi.org/10.3746/jkfn.2014.43.1.172
  4. Electrochemical signatures of multivitamin mixtures vol.140, pp.22, 2015, https://doi.org/10.1039/C5AN01964H
  5. Simultaneous Determination of Water Soluble Vitamins B Group in Health Functional Foods etc. by HPLC vol.30, pp.2, 2015, https://doi.org/10.13103/JFHS.2015.30.2.143
  6. Effects of roasting conditions on physicochemical properties and antioxidant activities in Ginkgo biloba seeds vol.27, pp.4, 2018, https://doi.org/10.1007/s10068-018-0348-7
  7. Ultrasonic-Assisted Solid-Phase Extraction Pre-concentration and Determination of Nicotinamide and Nicotinic Acid by High-Performance Liquid Chromatography Using Anthracite vol.8, pp.9, 2015, https://doi.org/10.1007/s12161-015-0095-9
  8. Phytochemical and physical properties of blueberries, tart cherries, strawberries, and cranberries as affected by different drying methods vol.262, pp.None, 2011, https://doi.org/10.1016/j.foodchem.2018.04.047
  9. Determination of 13 Vitamin B and the Related Compounds Using HPLC with UV Detection and Application to Food Supplements vol.83, pp.7, 2020, https://doi.org/10.1007/s10337-020-03902-2
  10. Ginkgo biloba L. seed; A comprehensive review of bioactives, toxicants, and processing effects vol.176, pp.None, 2022, https://doi.org/10.1016/j.indcrop.2021.114281
  11. Application of different drying methods for evaluation of phytochemical content and physical properties of broccoli, kale, and spinach vol.155, pp.None, 2011, https://doi.org/10.1016/j.lwt.2021.112892