Acknowledgement
Supported by : National Research Foundation of Korea(NRF)
References
- P. J. Eberlein: A Jacobi-like method for the automatic computation of eigenvalues and eigenvectors of an artibrary matrix. J. Soc. Indust. Appl. Math. (1962) 10, no. 1, 74-88. https://doi.org/10.1137/0110007
- H. H. Goldstine & L.P. Horwitz: A procedure for the diagonalization of normal matrices. J. Assoc. Comput. Mach. (1959) 6, 176-195. https://doi.org/10.1145/320964.320975
- G. Golub & C. V. Loan: Matrix Computations. Johns Hopkins University Press, 1983.
- D. Hacon: Jacobi's method for skew-symmetric matrices. SIAM J. Matrix Anal. Appl. (1993) 14, no. 3, 619-628. https://doi.org/10.1137/0614043
- P. Henrici: On the speed of convergence of cyclic and quasicyclic Jacobi methods for computing eigenvalues of Hermitian matrices. J. Soc. Indust. Appl. Math. (1958) 6, no. 2, 144-162. https://doi.org/10.1137/0106008
- J. Jacobi: Ber ein leichtes Verfahren, die in der Theorie der SdtularstSrungen vorkom-menden Gleichungen numerisch aufzulSsen. J. Reine Angew. Math. (1846) 30, 51-95.
- D. James & V. Kresimir: Jacobi's method is more accurate than QR. SIAM J. Matrix Anal. Appl. (1992) 13, no. 4, 1204-1245. https://doi.org/10.1137/0613074
- A. Ruhe: On the quadratic convergence of a generalization of the Jacobi method to arbitrary matrices. BIT Numerical Mathematics (1968) 8, no. 3, 210-231. https://doi.org/10.1007/BF01933422
- G. L. G. Sleijpen & H. A. Van der Vorst: A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM Review (2000) 42, no. 2, 267-293. https://doi.org/10.1137/S0036144599363084