DOI QR코드

DOI QR Code

Sensing of Cyanide Using Highly Selective Thiazole-based Cu2+ Chemosensor

  • Helal, Aasif (Department of Applied Chemistry, Kyungpook National University) ;
  • Kim, Se-Beom (Department of Applied Chemistry, Kyungpook National University) ;
  • Kim, Hong-Seok (Department of Applied Chemistry, Kyungpook National University)
  • Received : 2011.02.23
  • Accepted : 2011.03.07
  • Published : 2011.08.20

Abstract

Keywords

References

  1. Cho, D.-G.; Sessler, J. L. Chem. Soc. Rev. 2009, 38, 1647. https://doi.org/10.1039/b804436h
  2. Caltagirone, C.; Gale, P. A. Chem. Soc. Rev. 2009, 38, 520. https://doi.org/10.1039/b806422a
  3. Gale, P. A.; Garcia-Garrido, S. E.; Garric, J. Chem. Soc. Rev. 2008, 37, 151. https://doi.org/10.1039/b715825d
  4. Zimmermann-Dimer, L. M.; Machado, V. G. Quim. Nova 2008, 31, 2134. https://doi.org/10.1590/S0100-40422008000800038
  5. Anslyn, E. V. J. Org. Chem. 2007, 72, 687. https://doi.org/10.1021/jo0617971
  6. Nguyen, B. T.; Anslyn, E. V. Coord. Chem. Rev. 2006, 250, 3118. https://doi.org/10.1016/j.ccr.2006.04.009
  7. Gunnlaugsson, T.; Glynn, M.; Tocci, G. M.; Kruger, P. E.; Pfeffer, F. M. Coord. Chem. Rev. 2006, 250, 3094. https://doi.org/10.1016/j.ccr.2006.08.017
  8. Kubik, S.; Reyheller, C.; Stuwe, S. J. Inclusion Phenom. Macrocyclic Chem. 2005, 52, 137. https://doi.org/10.1007/s10847-005-0601-6
  9. Suksai, C.; Tuntulani, T. Chem. Soc. Rev. 2003, 32, 192. https://doi.org/10.1039/b209598j
  10. Martinez-Manez, R.; Sancenon, F. Chem. Rev. 2003, 103, 4419. https://doi.org/10.1021/cr010421e
  11. Xu, Z.; Chen, X.; Kim, H. N.; Yoon, J. Chem. Soc. Rev. 2010, 39, 127. https://doi.org/10.1039/b907368j
  12. World Health Organization, Concise International Chemical Assessment Document 61, Hydrogen Cyanide and Cyanides: Human Health Aspects; Geneva, 2004; pp 4-5. http:// www.who.int/ipcs/publications/cicad/en/cicad61.pdf (accessed January 09, 2009).
  13. Baskin, S. I.; Brewer, T. G. In Medical Aspects of Chemical and Biological Warfare; Sidell, F., Takafuji, E. T., Franz, D. R., Eds.; TMM Publications: Washington, DC, 1997; pp 271-286. Chapter 10.
  14. Vennesland, B.; Comm, E. E.; Knownles, C. J.; Westly, J.; Wissing, F. Cyanide in Biology; Academic Press: London, 1981.
  15. Ryall, B.; Davies, J. C.; Wilson, R.; Shoemark, A.; Williams, H. D. Eur. Respir. J. 2008, 32, 740. https://doi.org/10.1183/09031936.00159607
  16. Govan, J. R. W.; Deretic, V. Microbiol. Rev. 1996, 60, 539.
  17. The Agency for Toxic Substances and Disease Registry, Toxicological profile for cyanide, Atlanta, GA, US Department of Health and Human Services, pp 1-2, http://www.atsdr.cdc.gov/ toxprofiles/tp8-c1.pdf (accessed January 9, 2010).
  18. Young, C.; Tidwell, L.; Anderson, C. Cyanide: Social, Industrial, and Economic Aspects; Minerals, Metals, and Materials Society: Warrendale, 2001.
  19. Mak, K. K. W.; Yanase, H.; Renneberg, R. Biosens. Bioelectron. 2005, 20, 2581. https://doi.org/10.1016/j.bios.2004.09.015
  20. Xu, Z.; Pan, J.; Spring, D. R.; Cui, J.; Yoon, J. Tetrahedron 2010, 66, 1678. https://doi.org/10.1016/j.tet.2010.01.008
  21. Wang, J.; Ha, C.-S. Tetrahedron 2010, 66, 1846. https://doi.org/10.1016/j.tet.2010.01.031
  22. Lee, J. H.; Jeong, A. R.; Shin, I.-S.; Kim, H.-J.; Hong, J.- I. Org. Lett. 2010, 12, 764. https://doi.org/10.1021/ol902852g
  23. Lee, G. W.; Kim, N.-K.; Jeong, K.- S. Org. Lett. 2010, 12, 2634. https://doi.org/10.1021/ol100830b
  24. Saha, S.; Ghosh, A.; Mahato, P.; Mishra, S.; Mishra, S. K.; Suresh, E.; Das, S.; Das, A. Org. Lett. 2010, 12, 3406. https://doi.org/10.1021/ol101281x
  25. Hong, S.-J.; Yoo, J.; Kim, S.-H.; Kim, J. S.; Yoon, J.; Lee, C.-H. Chem. Commun. 2009, 189.
  26. Lee, K.-S.; Lee, J. T.; Hong, J.-I.; Kim, H.-J. Chem. Lett. 2007, 36, 816. https://doi.org/10.1246/cl.2007.816
  27. Chen, C.-L.; Chen, Y.-H.; Chen, C.-Y.; Sun, S.-S. Org. Lett. 2006, 8, 5053. https://doi.org/10.1021/ol061969g
  28. Kim, Y. H.; Hong, J. I. Chem. Commun. 2002, 512.
  29. Anzenbacher, P. Jr.; Tyson, D. S.; Jursikova, K.; Castellano, F. N. J. Am. Chem. Soc. 2002, 124, 6232. https://doi.org/10.1021/ja0259180
  30. Chow, C. F.; Lam, M. H. W.; Wong, W. Y. Inorg. Chem. 2004, 43, 8387. https://doi.org/10.1021/ic0492587
  31. Badugu, R., Lakowicz, J. R.; Geddes, C. D. J. Am. Chem. Soc. 2005, 127, 3635. https://doi.org/10.1021/ja044421i
  32. Ros-Lis, J. V.; Martinez-Manez, R.; Soto, J. Chem. Commun. 2005, 5260.
  33. Sun, S. S.; Lees, A. J. Chem. Commun. 2000, 1687.
  34. Miyaji, H.; Sessler, J. L. Angew. Chem. Int. Ed. 2001, 40, 154. https://doi.org/10.1002/1521-3773(20010105)40:1<154::AID-ANIE154>3.0.CO;2-G
  35. Ganesh, V.; Sanz, M. P. C.; Mareque-Rivas, J. C. Chem. Commun. 2007, 5010.
  36. Zeng, Q.; Cai, P.; Li, Z.; Qin, J.; Tang, B. Z. Chem. Commun. 2008, 1094.
  37. Lou, X. D.; Zhang, L.; Qin, J.; Li, Z. Chem. Commun. 2008, 5848.
  38. Li, Z. A.; Lou, X. D.; Yu, H. B.; Li, Z.; Qin, J. Macromolecules 2008, 41, 7433. https://doi.org/10.1021/ma8013096
  39. Chung, S. Y.; Nam, S. W.; Lim, J.; Park, S.; Yoon, J. Chem. Commun. 2009, 2866.
  40. Tomasulo, M.; Sortino, S.; White, A. J. P.; Raymo, F. M. J. Org. Chem. 2006, 71, 744. https://doi.org/10.1021/jo052096r
  41. Ren, J. Q.; Zhu, W. H.; Tian, H. Talanta 2008, 75, 760. https://doi.org/10.1016/j.talanta.2007.12.024
  42. Garcia, F.; Garcia, J. M.; Garcia- Acosta, B.; Martinez-Manez, R.; Sancenon, F.; Soto, J. Chem. Commun. 2005, 2790.
  43. Ros-Lis, J. V.; Martinez-Manez, R.; Soto, J. Chem. Commun. 2002, 2248.
  44. Chung, Y.; Lee, H.; Ahn, K. H. J. Org. Chem. 2006, 71, 9470. https://doi.org/10.1021/jo061798t
  45. Yang, Y. K.; Tae, J. Org. Lett. 2006, 8, 5721. https://doi.org/10.1021/ol062323r
  46. Lee, K. S.; Kim, H. J.; Kim, G. H.; Shin, I.; Hong, J. I. Org. Lett. 2008, 10, 49. https://doi.org/10.1021/ol7025763
  47. Kwon, S. K.; Kou, S.; Kim, H. N.; Chen, X. Q.; Wang, H.; Nam, S. W.; Kim, S. H.; Swamy, K. M. K.; Park, S.; Yoon, J. Tetrahedron Lett. 2008, 49, 4102. https://doi.org/10.1016/j.tetlet.2008.04.139
  48. Park, S.; Kim, H. J. Chem. Commun. 2010, 9197.
  49. Chung, Y. M.; Raman, B.; Kim, D. S.; Ahn, K. H. Chem. Commun. 2006, 186.
  50. Ryu, D.; Park, E.; Kim, D. S.; Yan, S.; Lee, J. Y.; Chang, B. Y.; Ahn, K. H. J. Am. Chem. Soc. 2008, 130, 2394. https://doi.org/10.1021/ja078308e
  51. Niu, H. T.; Jiang, X. L.; He, J. Q.; Cheng, J. P. Tetrahedron Lett. 2008, 49, 6521. https://doi.org/10.1016/j.tetlet.2008.08.115
  52. Niu, H. T.; Su, D.; Jiang, X.; Yang, W.; Yin, Z.; He, J.; Cheng, J. P. Org. Biomol. Chem. 2008, 6, 3038. https://doi.org/10.1039/b808589g
  53. Ekmekci, Z.; Yilmaz, M. D.; Akkaya, E. U. Org. Lett. 2008, 10, 461. https://doi.org/10.1021/ol702823u
  54. Yoon, S.; Albers, A. E.; Wong, A. P.; Chang, C. J. J. Am. Chem. Soc. 2005, 127, 16030. https://doi.org/10.1021/ja0557987
  55. Helal, A.; Thao, N. T. T.; Lee, S.; Kim, H.-S. J. Inclusion Phenom. Macrocyclic Chem. 2010, 66, 87. https://doi.org/10.1007/s10847-009-9648-0
  56. Helal, A.; Kim, H.-S. Tetrahedron Lett. 2009, 50, 5510. https://doi.org/10.1016/j.tetlet.2009.07.078
  57. Helal, A.; Lee, S. H.; Kim, S. H.; Kim, H.-S. Tetrahedron Lett. 2010, 51, 3531. https://doi.org/10.1016/j.tetlet.2010.04.126
  58. Helal, A.; Rashid, M. H. O.; Choi, C.-H.; Kim, H.-S. Tetrahedron 2011, 67, 2794. https://doi.org/10.1016/j.tet.2011.01.093
  59. Kramer, R. Angew. Chem. Int. Ed. 1998, 37, 772. https://doi.org/10.1002/(SICI)1521-3773(19980403)37:6<772::AID-ANIE772>3.0.CO;2-Z
  60. Xiang, Y.; Tong, A.; Jin, P.; Ju, Y. Org. Lett. 2006, 8, 2863. https://doi.org/10.1021/ol0610340
  61. Chen, X.; Li, Z.; Xiang, Y.; Tong, A. Tetrahedron Lett. 2008, 49, 4697. https://doi.org/10.1016/j.tetlet.2008.05.137
  62. Keck, J.; Kramer, H. E. A.; Port, H.; Hirsch, T.; Fischer, P.; Rytz, G. J. Phys. Chem. 1996, 100, 14468. https://doi.org/10.1021/jp961081h
  63. Henary, M. M.; Fahrni, C. J. J. Phys. Chem. A 2002, 106, 5210. https://doi.org/10.1021/jp014634j
  64. Santra, S.; Krishnamoorthy, G.; Dogra, S. K. J. Phys. Chem. A 2000, 104, 476. https://doi.org/10.1021/jp992678a
  65. Mosquera, M.; Penedo, J. C.; Rios Rodriguez, M. C.; Rodriguez-Prieto, F. J. Phys. Chem. 1996, 100, 5398. https://doi.org/10.1021/jp9533638
  66. Das, K.; Sarkar, N.; Majumdar, D.; Bhattacharyya, K. Chem. Phys. Lett. 1992, 198, 443. https://doi.org/10.1016/0009-2614(92)80025-7
  67. Connors, K. A. Binding Constants: the Measurement of Molecular Complex Stability; New York: Wiley, 1987; pp 21-101; 339-343.
  68. Forgues, S. F.; LeBris, M. T.; Gutte, J. P.; Valuer, B. J. Phys. Chem. 1988, 92, 6233. https://doi.org/10.1021/j100333a013
  69. Thordarson, P. Chem. Soc. Rev. 2011, 40, 1305. https://doi.org/10.1039/c0cs00062k
  70. Fabbrizzi, L.; Licchelli, M.; Pallavicini, P.; Parodi, L.; Taglietti, A. In Transition Metals in Supramolecuar Chemistry; Sauvage, J. P., Ed.; Fluorescent Sensors for and with Transition Metals; John Wiley & Sons Ltd: Chichester, 1999.
  71. Ci, Y. X.; Zhou, T. Z. The Coordinated Complexes in Analytical Chemistry; Peking University Press: Beijing, 1984.
  72. Shortreed, M.; Kopelman, R.; Kuhn, M.; Hoyland, B. Anal. Chem. 1996, 68, 1414. https://doi.org/10.1021/ac950944k

Cited by

  1. Selective Recognition of Cyanide Anion via Formation of Multipoint NH and Phenyl CH Hydrogen Bonding with Acyclic Ruthenium Bipyridine Imidazole Receptors in Water vol.51, pp.13, 2012, https://doi.org/10.1021/ic300217v
  2. A pyrenesulfonyl-imidazolium derivative as a selective cyanide ion sensor in aqueous media vol.39, pp.4, 2015, https://doi.org/10.1039/C4NJ01603C
  3. Fluorescein-N-Methylimidazole Conjugate as Cu2+ Sensor in Mixed Aqueous Media Through Electron Transfer vol.26, pp.1, 2016, https://doi.org/10.1007/s10895-015-1713-z
  4. and hydrogen sulfide based on a naphthalimide–rhodamine B derivative and its application in dual-channel cell imaging vol.8, pp.58, 2018, https://doi.org/10.1039/C8RA05963B
  5. Highly Selective Fluorescent Probe Based on 2-(2′-Dansylamidophenyl)-Thiazole for Sequential Sensing of Copper(II) and Iodide Ions vol.40, pp.2, 2019, https://doi.org/10.1002/bkcs.11663
  6. Teaching a Known Molecule New Tricks: Optical Cyanide Recognition by 2-[(9-Ethyl-9H-carbazol-3-yl)methylene]propanedinitrile in Aqueous Solution vol.33, pp.11, 2011, https://doi.org/10.5012/bkcs.2012.33.11.3696
  7. Fluorescent Sensor for Sequentially Monitoring Zinc(II) and Cyanide Anion in Near-Perfect Aqueous Media vol.57, pp.1, 2011, https://doi.org/10.1021/acs.iecr.7b03826
  8. Instant detection of cyanide in seafood with a tryptophan based fluorescence probe vol.11, pp.28, 2011, https://doi.org/10.1039/c9ay00936a
  9. A hydrazono-quinoline-based chemosensor sensing In3+ and Zn2+via fluorescence turn-on and ClOvia color change in aqueous solution vol.43, pp.19, 2011, https://doi.org/10.1039/c9nj00899c
  10. A Robust Multifunctional Eu6-Cluster Based Framework for Gas Separation and Recognition of Small Molecules and Heavy Metal Ions vol.19, pp.11, 2019, https://doi.org/10.1021/acs.cgd.9b00866
  11. Optical Sensing of Copper and Its Removal by Different Environmental Technologies vol.5, pp.34, 2011, https://doi.org/10.1002/slct.202002113
  12. Modulating excited‐state intramolecular proton transfer of 2‐(5‐(4‐carboxyphenyl)‐2‐hydroxyphenyl)benzothiazole depending on substituents: A DFT/TD‐DFT study vol.33, pp.12, 2011, https://doi.org/10.1002/poc.4109
  13. A benzyl carbazate-based colorimetric chemosensor for relay detection of Cu2+ and S2− in near-perfect aqueous media vol.1240, pp.None, 2011, https://doi.org/10.1016/j.molstruc.2021.130576
  14. Effectively controlling the ESIPT behavior and fluorescence feature of 2-(2′-hydroxyphenyl)-4-chloromethylthiazole by changing its π-conjugation: A theoretical exploration vol.422, pp.None, 2022, https://doi.org/10.1016/j.jphotochem.2021.113548