DOI QR코드

DOI QR Code

Synthesis and Characterization of Novel Conjugated Polymer with Thiophene and Benzimidazole

  • Song, Su-Hee (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Park, Sung-Heum (Department of Physics, Pukyong National University) ;
  • Jin, Young-Eup (Department of Industrial Chemistry, Pukyong National University) ;
  • Kim, Il (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of polymer Science and Engineering, Pusan National University) ;
  • Lee, Kwang-Hee (Department of Materials Science and Engineering Gwangju Institute of Science and Technology) ;
  • Suh, Hong-Suk (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
  • Received : 2011.03.14
  • Accepted : 2011.06.08
  • Published : 2011.08.20

Abstract

The synthesis of copolymers containing thiophene and benzimidazole unit by Stille polymerization is reported. The polymers with many unsubstituted thiophene units in the backbone have been reported to show low solubility, which has been a problem for spin-coating for the device fabrication. In dihexyl-2H-benzimidazole, the sulfur at 2-position of BT unit was replaced with dialkyl substituted carbon, while keeping the 1,2-quinoid form, to improve the solubility of the polymers. The PL emission spectra of the PHBIT1, PHBIT2 and PHBIT3 in chloroform solutions show maximum peaks at 500~561 nm. In thin films, maximum peaks of the PHBITs appeared at 529, 562 and 569 nm, respectively. The EL emission maxima of the PHBIT1 and PHBIT2 appear at around 588 and 576 nm, respectively. The current density and maximum luminescence of the LED with the configuration of ITO/PEDOT/ PHBIT2/Ca/Al are 552 mA/$cm^2$ and 46 cd/$m^2$, respectively.

Keywords

References

  1. Song, S.; Jin, Y.; Kim, S. H.; Shim, J. Y.; Son, S.; Kim, I.; Lee, K.; Suh, H. J. Polym. Sci. Polym. Chem. 2009, 47, 6540. https://doi.org/10.1002/pola.23697
  2. Jin, Y.; Kim, J.; Park, S. H.; Lee, K.; Suh, H. Bull. Korean Chem. Soc. 2005, 26, 795. https://doi.org/10.5012/bkcs.2005.26.5.795
  3. Jin, Y.; Kim, K.; Song, S.; Kim, J.; Kim, J.; Park, S. H.; Lee, K.; Suh, H. Bull. Korean Chem. Soc. 2006, 27, 1043. https://doi.org/10.5012/bkcs.2006.27.7.1043
  4. Jin, Y.; Kang, J. H.; Song, S.; Park, S. H.; Moon, J.; Woo, H. Y.; Lee, K.; Suh, H. Bull. Korean Chem. Soc. 2008, 29, 139. https://doi.org/10.5012/bkcs.2008.29.1.139
  5. Tonzola, C. J.; Alam, M. M.; Bean, B. A.; Jenekhe, S. A. Macromolecules 2004, 37, 3554. https://doi.org/10.1021/ma035971o
  6. Cho, S.; Seo, J. H.; Kim, S. H.; Song, S.; Jin, Y.; Lee, K.; Suh, H.; Heeger, A. J. Appl. Phys. Lett. 2008, 93, 263301. https://doi.org/10.1063/1.3059554
  7. Song, S.; Park, S. H.; Jin, Y.; Goo, Y.; Kim, I.; Lee, H.; Lee, K.; Suh, H. Synth. Met. 2010, 160, 2618. https://doi.org/10.1016/j.synthmet.2010.10.013
  8. Hsieh, B. Y.; Chen, Y. J. Polym. Sci. Polym. Chem. 2008, 46, 3703. https://doi.org/10.1002/pola.22711
  9. Hsieh, B. Y.; Chen, Y. Macromolecules 2007, 40, 8913. https://doi.org/10.1021/ma071271y
  10. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature (London) 1990, 347, 539. https://doi.org/10.1038/347539a0
  11. Liang, Y.; Wu, Y.; Feng, D.; Tsai, S. T.; Son, H. J.; Li, G.; Yu, L. J. Am. Chem. Soc. 2009, 131, 56. https://doi.org/10.1021/ja808373p
  12. Jin, Y.; Kim, J. Y.; Park, S. H.; Kim, J.; Lee, S.; Lee, K.; Suh, H. Polymer 2005, 46, 12158. https://doi.org/10.1016/j.polymer.2005.10.080
  13. Song, S.; Jin, Y.; Kim, J.; Park, S. H.; Kim, S. H.; Lee, K.; Suh, H. Polymer 2008, 49, 5643. https://doi.org/10.1016/j.polymer.2008.10.012
  14. Jin, Y.; Kim, Y.; Kim, S. H.; Song, S.; Woo. H. Y.; Lee, K.; Suh, H. Macromolecules 2008, 41, 5548. https://doi.org/10.1021/ma800823u
  15. Bao, Z.; Dodabalapur, A.; Lovinger, A. J. Appl. Phys. Lett. 1996, 69, 4108. https://doi.org/10.1063/1.117834
  16. Chung, T. C.; Kaufman, J. H.; Heeger, A. J.; Wudl, F. Phys. Rev. B 1984, 30, 702. https://doi.org/10.1103/PhysRevB.30.702
  17. Kobayashi, M.; Chen, J.; Chung, T. C.; Moraes, F.; Heeger, A. J.; Wudl, F. Synth. Met. 1984, 9, 77. https://doi.org/10.1016/0379-6779(84)90044-4
  18. Tekin, E.; Egbe, D. A. M.; Kranenburg, J. M.; Ulbricht, C.; Rathgeber, S.; Birckner, E.; Rehmann, N.; Meerholz, K.; Schubert, U. S. Chem. Mater. 2008, 20, 2727. https://doi.org/10.1021/cm703312u
  19. Song, S.; Jin, Y.; Park, S. H.; Cho, S.; Kim, I.; Lee, K.; Heeger, A. J.; Suh, H. J. Mater. Chem. 2010, 20, 6517. https://doi.org/10.1039/c0jm00772b
  20. Song, S.; Park, S. H.; Jin, Y.; Park, J.; Shim, J. Y.; Kim, I.; Lee, H.; Lee, K.; Suh, H. J. Polym. Sci. Polym. Chem. 2010, 48, 4567. https://doi.org/10.1002/pola.24248
  21. Song, S.; Park, S. H.; Jin, Y.; Kim, I.; Lee, K.; Suh, H. Polymer 2010, 51, 5385. https://doi.org/10.1016/j.polymer.2010.09.035

Cited by

  1. Chemical Insight Into Benzimidazole Containing Donor-Acceptor-Donor Type Π-Conjugated Polymers: Benzimidazole As An Acceptor pp.1558-3716, 2018, https://doi.org/10.1080/15583724.2017.1329210
  2. Propylenedioxy and Benzimidazole Based Electrochromic Polymers vol.163, pp.5, 2016, https://doi.org/10.1149/2.0161606jes
  3. Synthesis, characterization, thermal, electrical and electrochemical studies of oligo nitrobenzimidazoles and their p–n diode applications vol.29, pp.16, 2018, https://doi.org/10.1007/s10854-018-9468-3
  4. Oxidative polycondensation of benzimidazole using NaOCl: Synthesis, characterization, optical, thermal and electrical properties of polybenzimidazoles vol.1147, pp.None, 2017, https://doi.org/10.1016/j.molstruc.2017.06.113