DOI QR코드

DOI QR Code

Effect of Nitrite and Nitrate as the Source of OH Radical in the O3/UV Process with or without Benzene

  • Son, Hyun-Seok (Department of Applied Chemistry, Konkuk University) ;
  • Ahammad, A.J. Saleh (Department of Advanced Technology Fusion, Konkuk University) ;
  • Rahman, Md. Mahbubur (Department of Advanced Technology Fusion, Konkuk University) ;
  • Noh, Kwang-Mo (Department of Nano Science & Mechanical Engineering, Konkuk University) ;
  • Lee, Jae-Joon (Department of Applied Chemistry, Konkuk University)
  • Received : 2011.03.16
  • Accepted : 2011.06.06
  • Published : 2011.08.20

Abstract

This study suggests the prediction model for the concentration variation of $NO_2{^-}$ and $NO_3{^-}$ along with the rate constants of all reactions during ozonation under UV radiation ($O_3$/UV process). While $NO_2{^-}$ was completely converted into $NO_3{^-}$ during the $O_3$-only process, the production of $NO_2$ radical or $N_2O_4$ was expected in the $O_3$/UV process. In addition, the quenching of OH radicals, by $NO_2$ radical in the $O_3$/UV process, resulted in regeneration of $NO_2{^-}$. However, the regeneration of $NO_2{^-}$ was not observed in the $O_3$/UV process in the presence of $C_6H_6$ where the concentrations of $NO_2{^-}$ and $NO_3{^-}$ were significantly reduced compared to in the process without $C_6H_6$. The pseudo-first order rate constants of all species were calculated with and without the presence of $C_6H_6$ to predict the variation of concentrations of all species during the $O_3$/UV process. It was suggested that $NO_2{^-}$ and $NO_3{^-}$ in the $O_3$/UV process can be more effectively removed from an aqueous system with an OH radical scavenger such as $C_6H_6$.

Keywords

References

  1. Son, H. S.; Im, J. K.; Zoh, K. D. Water Research 2009, 43, 1457. https://doi.org/10.1016/j.watres.2008.12.029
  2. Canonica, S.; Jans, U.; Stemmler, K.; Hoigne', J. Environ. Sci. Technol. 1995, 29, 1822. https://doi.org/10.1021/es00007a020
  3. Kusic, H.; Koprivanvac, N.; Bozic, A. L. Chemical Engineering Journal 2006, 123, 127. https://doi.org/10.1016/j.cej.2006.07.011
  4. Chen, S. N.; Hoffman, M. Radiation Research 1793, 56, 40.
  5. Canonica, S.; Tratnyek, P. G. Environ. Toxicol. Chem. 2003, 22, 1743. https://doi.org/10.1897/01-237
  6. Vione, D.; Falletti, G.; Maurino, V.; Minero, C.; Pelizzetti, E.; Malandrino, M.; Ajassa, R.; Olariu, R.; Arsene, C. Envrion. Sci., Technol. 2006, 40, 3775. https://doi.org/10.1021/es052206b
  7. Huber, M. M.; Canonica, S.; Park, G. Y.; von Gunten, U. Environ. Sci. Technol. 2003, 37, 1016. https://doi.org/10.1021/es025896h
  8. Huber, M. M.; Gbel, A.; Joss, A.; Hermann, N.; Lffler, D.; Mcaardell, C. S.; Ternes, T. A.; Gunten, U. V. Environ. Sci. Technol. 2005, 39, 4290. https://doi.org/10.1021/es048396s
  9. Wert, E. C.; Rosario-Ortiz, F. L.; Snyder, S. A. Water Research 2009, 43, 1005. https://doi.org/10.1016/j.watres.2008.11.050
  10. Wu, J. J.; Yang, J. S.; Muruganandham, M.; Wu, C.C. Separat. & Purificat. Technol. 2008, 62, 39. https://doi.org/10.1016/j.seppur.2007.12.018
  11. Staehelln, J.; Holgn, J. Environ. Sci. Technol. 1982, 16, 676. https://doi.org/10.1021/es00104a009
  12. Lin, C.; Chao, C.; Liu, M.; Lee, Y. J. Hazard. Mater. 2009, 167, 1014. https://doi.org/10.1016/j.jhazmat.2009.01.092
  13. Wert, E.; Rosario-Ortiz, F. L.; Snyder, S. A. Environ. Sci. Technol. 2009, 43, 4858. https://doi.org/10.1021/es803524a
  14. Rosehfeldt, E. J.; Linden, K. G.; Canonica, S.; von Gunten, U. Water Research 2006, 40, 3695. https://doi.org/10.1016/j.watres.2006.09.008
  15. Wert, E. C.; Rosario-Ortiz, F. L.; Drury, D. D.; Snyder, S.A. Water Research 2007, 41, 1481. https://doi.org/10.1016/j.watres.2007.01.020
  16. Latifoglu, A.; Gurol, M. D. Water Research 2003, 37, 1879. https://doi.org/10.1016/S0043-1354(02)00583-3
  17. Garoma, T.; Gurol, M. D. Environ. Sci. Technol. 2005, 39, 7964. https://doi.org/10.1021/es050878w
  18. Zepp, R. G. Environ. Sci. Technol. 1987, 21, 443. https://doi.org/10.1021/es00159a004
  19. Brezonik, P. L.; Fulkerson-Brekken, J. Environ. Sci. Technol. 1998, 32, 3004. https://doi.org/10.1021/es9802908
  20. Warneck, P.; Christa, W. J. Phys. Chem. 1998, 92, 6278.
  21. Carlucci, A. F.; Hartwig, E. O.; Bowes, P. M. Mar. Biol. 1970, 7, 161. https://doi.org/10.1007/BF00354921
  22. Zafiriou, O. C.; True, M. B. Mar. Chem. 1979, 8, 9. https://doi.org/10.1016/0304-4203(79)90029-X
  23. Yang, M.; Uesugi, K.; Myoga, H. Water Research 1999, 33, 1911. https://doi.org/10.1016/S0043-1354(98)00364-9
  24. Da Silva, L. M.; Franco, D. V.; Forti, J. C.; Jardim, W.F.; Boodts, J.F.C. J. Applied Electrochemistry 2006, 36, 523. https://doi.org/10.1007/s10800-005-9067-x
  25. Santana, M. H. P.; Da Silva, L. M.; Freitas, A. C.; Boodts, J. F. C.; Fernandes, K. C.; De Faria, L. A. J. Hazard. Mater. 2009,164, 10. https://doi.org/10.1016/j.jhazmat.2008.07.108
  26. Cox, R. A.; Coker, G. B. J. Atmosphere Chemistry 1983, 1, 53. https://doi.org/10.1007/BF00113979
  27. Chu, L.; Anastasio, C. J. Phys. Chem. A 2003, 107, 9594. https://doi.org/10.1021/jp0349132
  28. Giamalva, D. H.; Kenion, G. B.; Church, D. F.; Pryor, W. A. J. Am. Chem. Soc. 1987, 109, 7059. https://doi.org/10.1021/ja00257a025
  29. Gonzalez, M. C.; Braun, A. M. J. Photochem. Photobiol. A: Chemistry 1996, 93, 7. https://doi.org/10.1016/1010-6030(95)04127-3
  30. Mack, J.; Bolton, J. R. J. Photochem. Photobiol. A: Chemistry 1999, 128, 1. https://doi.org/10.1016/S1010-6030(99)00155-0
  31. Haag, W. R.; Hoign, J. Chemosphere 1985, 14, 1659. https://doi.org/10.1016/0045-6535(85)90107-9
  32. Treinin, A.; Hayon, E. J. Am. Chem. Soc. 1970, 92, 5821. https://doi.org/10.1021/ja00723a001

Cited by

  1. Degradation of 4-Chlorobenzoïc Acid in a Thin Falling Film Dielectric Barrier Discharge Reactor vol.53, pp.25, 2014, https://doi.org/10.1021/ie403772t
  2. Kinetics of photocatalytic removal of imidacloprid from water by advanced oxidation processes with respect to nanotechnology vol.17, pp.2, 2011, https://doi.org/10.2166/wh.2019.259
  3. A Microfluidic Atmospheric-Pressure Plasma Reactor for Water Treatment vol.39, pp.3, 2011, https://doi.org/10.1007/s11090-019-09970-z
  4. Degradation of tetracycline antibiotics by Fe2+-catalyzed percarbonate oxidation vol.781, pp.None, 2011, https://doi.org/10.1016/j.scitotenv.2021.146411