DOI QR코드

DOI QR Code

Oxidation of Benzyl Alcohols with Extraordinarily High Kinetic Isotope Effects

  • Received : 2011.03.11
  • Accepted : 2011.04.21
  • Published : 2011.08.20

Abstract

Reactions of benzyl alcohol and its derivatives by [Ru$^{IV}$(tpy)(dcbpy)(O)]$^{2+}$ (tpy = 2,2':6',2"-terpyridine; dcbpy = 4,4'-dicarboxy-2,2'-bipyridine) leading to the corresponding benzaldehydes in acetonitrile and water have been studied. Kinetic studies show that the reaction is first-order in both alcohol and oxidant, with k = 1.65 (${\pm}$ 0.1) $M^{-1}s^{-1}$ at $20^{\circ}C$, ${\Delta}H^{\ddag}$ = 4.3 (${\pm}$ 0.1) kcal/mol, ${\Delta}S^{\ddag}$ = -22 (${\pm}$ 1) eu, and $E_a$ = 4.9 (${\pm}$ 0.1) kcal/mol. High ${\alpha}$ C-H kinetic isotope effects are observed, but O-H solvent isotope effects are negligible. Spectral evidences with the isotope effects suggest that oxidation of benzyl alcohols occurs by a two-electron, hydride transfer. The catalytic cycles of aerobic benzyl alcohol oxidation are employed.

Keywords

References

  1. Gong, J. I.; Mullins, C. B. Acc. Chem. Res. 2009, 42, 1063. https://doi.org/10.1021/ar8002706
  2. Hu, L.; Cao, X.; Yang, J.; Li, M.; Hong, H.; Xu, Q.; Ge, J.; Wang, L.; Lu, J.; Chen, L.; Hu, H. Chem. Commun. 2011, 47, 1303 https://doi.org/10.1039/c0cc01568g
  3. Meyer, T. J.; Huynh, M. H. V. Inorg. Chem. 2003, 42, 8140. https://doi.org/10.1021/ic020731v
  4. Zhang, J.; Liang, J.-L.; Sun, X.-R.; Zhou, H.-B.; Zhu, N.-Y.; Chan, P. W. H.; Che, C.-M. Inorg. Chem. 2005, 44, 3942. https://doi.org/10.1021/ic0481935
  5. Waidmann, C. R.; Zhou, X.; Tsai, E. A.; Kaminsky, W.; Hrovat, D. A.; Borden, W. T.; Mayer, J. M. J. Am. Chem. Soc. 2009, 131, 4729. https://doi.org/10.1021/ja808698x
  6. Karmee, S. K.; Greiner, L.; Kraynov, A.; Muller, T. E.; Niemeijer, B.; Leitner, W. Chem. Commun. 2010, 46, 6705. https://doi.org/10.1039/c0cc01443e
  7. Wasylenko, D. J.; Ganesamoorthy, C.; Koivisto, B. D.; Henderson, M. A.; Berlinguette, C. P. Inorg. Chem. 2010, 49, 2202. https://doi.org/10.1021/ic902024s
  8. Chen, Z.; Concepcion, J. J.; Hu, X.; Yang, W.; Hoertz, P. G.; Meyer, T. J. Proc. Nat. Acad. Sci. 2010, 107, 7225. https://doi.org/10.1073/pnas.1001132107
  9. Gratzel, M. Acc. Chem. Res. 2000, 33, 269. https://doi.org/10.1021/ar980112j
  10. Wang, M.; Liu, J.; Cevey-Ha, N.; Moon, S.-J.; Liska, P.; Humphry-Baker, R.; Moser, J.-E.; Gratzel, C.; Wang, P.; Zakeeruddin, S.; Gratzel, M. Nano Today 2010, 5, 169. https://doi.org/10.1016/j.nantod.2010.04.001
  11. Hornstein, B. J.; Dattelbaum, D. M.; Schoonover, J. R.; Meyer, T. J. Inorg. Chem. 2007, 46, 8139. https://doi.org/10.1021/ic0700506
  12. Liu, L.; Yu, M.; Wayland, B. B.; Fu, X. Chem. Commun. 2010, 46, 6353 https://doi.org/10.1039/c0cc01406k
  13. Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: New York, 1988.
  14. Seok, W. K.; Gupta, A. K.; Roh, S.-J.; Lee, W.; Han, S.-H. Bull. Korean Chem. Soc. 2007, 28, 1311. https://doi.org/10.5012/bkcs.2007.28.8.1311
  15. Moore, J. W.; Pearson, R. G. Kinetics and Mechanisms, 3rd ed.; John Wiley & Sons: New York, 1981; p 71.
  16. Bales, B. C.; Brown, P.; Dehestani, A.; Mayer, J. M. J. Am. Chem. Soc. 2005, 127, 2822. https://doi.org/10.1021/ja0428154
  17. Seok, W. K.; Meyer, T. J. Inorg. Chem. 2005, 44, 3931. https://doi.org/10.1021/ic040119z
  18. Dobson, J. C.; Helms, J. H.; Doppelt, P.; Sullivan, B. P.; Hatfield, W. E.; Meyer, T. J. Inorg. Chem. 1989, 28, 2200. https://doi.org/10.1021/ic00310a037
  19. Thompson, M. S.; Meyer, T. J. J. Am. Chem. Soc. 1982, 104, 4106. https://doi.org/10.1021/ja00379a011
  20. Roecker, L.; Meyer, T. J. J. Am. Chem. Soc. 1987, 109, 746. https://doi.org/10.1021/ja00237a019
  21. Binstead, R. A.; McGuire, M. E.; Dovletoglou, A.; Seok, W. K.; Meyer, T. J. J. Am. Chem. Soc. 1992, 114, 173. https://doi.org/10.1021/ja00027a025
  22. Binstead, R. A.; Moyer, B. A.; Samuels, G. J.; Meyer, T. J. J. Am. Chem. Soc. 1981, 103, 2897. https://doi.org/10.1021/ja00400a083
  23. Kreevoy, M. M.; Kotchevar, A. T. J. Am. Chem. Soc. 1990, 112, 3579. https://doi.org/10.1021/ja00165a049
  24. Lee, I.-S. H.; Chow, K.-H.; Kreevoy, M. M. J. Am. Chem. Soc. 2002, 124, 7735.
  25. Sutin, N. Acc. Chem. Res. 1982, 15, 275. https://doi.org/10.1021/ar00081a002
  26. Anderson, S. N.; Cooksey, C. J.; Holton, S. G.; Johnson, M. D. J. Am. Chem. Soc. 1980, 102, 2312. https://doi.org/10.1021/ja00527a031
  27. Bryant, J. R.; Mayer, J. M. J. Am. Chem. Soc. 2003, 125, 10351. https://doi.org/10.1021/ja035276w
  28. Lam, W. W. Y.; Yiu, S.- M.; Yiu, D. T. Y.; Lau, T.-C.; Yip, W.-P.; Che, C.-M. Inorg. Chem. 2003, 42, 8011. https://doi.org/10.1021/ic034782j
  29. Mezer, A.; Friedman, R.; Noivirt, O.; Nachliel, E.; Gutman, M. J. Phys. Chem. B 2005, 109, 11379. https://doi.org/10.1021/jp046213i
  30. Jeong, Y. J.; Kang, Y.; Han, A.-R.; Lee, Y.-M.; Kotani, H.; Fukuzumi, S.; Nam, W. Angew. Chem. Int. Ed. 2008, 47, 7321. https://doi.org/10.1002/anie.200802346

Cited by

  1. vol.8, pp.14, 2016, https://doi.org/10.1021/acsami.6b00932
  2. Large Isotope Effects in Organometallic Chemistry vol.27, pp.60, 2011, https://doi.org/10.1002/chem.202102189