DOI QR코드

DOI QR Code

Aminolysis of Y- Substituted Phenyl Benzenesulfonates in MeCN: Effect of Medium on Reactivity and Reaction Mechanism

  • Kim, Chae-Won (Department of Chemistry and Plant Resources Research Institute, Duksung Women's University) ;
  • Lee, Jae-In (Department of Chemistry and Plant Resources Research Institute, Duksung Women's University) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
  • Received : 2011.03.08
  • Accepted : 2011.03.24
  • Published : 2011.08.20

Abstract

Second-order rate constants for nucleophilic substitution reactions of 2,4-dinitrophenyl benzenesulfonate 1a with a series of alicyclic secondary amines in MeCN have been measured spectrophotometrically and compared with those reported previously for the corresponding reactions performed in aqueous medium to investigate the effect of medium on reactivity and reaction mechanism. The amines employed in this study are found to be more reactive in the aprotic solvent than in $H_2O$. The reactions of 1a in MeCN result in a linear Br${\o}$nsted-type plot with ${\beta}_{nuc}$ = 0.58, which contrasts to the curved Br${\o}$nsted-type plot reported previously for the corresponding reactions performed in the aqueous medium (i.e., ${\beta}_2$ = 0.86 and ${\beta}_1$ = 0.38). Accordingly, it has been concluded that the reaction mechanism changes from a stepwise mechanism to a concerted pathway upon changing the medium from $H_2O$ to MeCN. Reactions of Y-substituted phenyl benzenesulfonates 1a-c with piperidine in MeCN result in a linear Br${\o}$nsted-type plot with ${\beta}_{lg}$ = -1.31, indicating that expulsion of the leaving group is significantly more advanced than bond formation in the transition state. The trigonal bipyramidal intermediate ($TBPy^{\pm}$) proposed previously for the reactions in $H_2O$ would be highly unstable in MeCN due to strong repulsion between the negative charge in $TBPy^{\pm}$ and the negative dipole end of MeCN. Thus, destabilization of $TBPy^{\pm}$ in MeCN has been concluded to change the reaction mechanism from a stepwise mechanism to a concerted pathway.

Keywords

References

  1. Hughes, E. D.; Ingold, C. K. J. Chem. Soc. 1935, 244-255. https://doi.org/10.1039/jr9350000244
  2. Parker, A. J. Chem. Rev. 1969, 69, 1-32. https://doi.org/10.1021/cr60257a001
  3. Ritchie, C. D.; Coetzee, J. F. In Solvent-Solute Interactions; Marcel Dekker: New York, 1969.
  4. Reichardt, C. Solvents and Solvent Effects in Organic Chemistry; VCH: Weinheim, 1988.
  5. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 2nd ed.; Harper and Row: New York, 1981; Chapt. 4.
  6. Buncel, E.; Wilson, H. Adv. Phys. Org. Chem. 1977, 14, 133- 202. https://doi.org/10.1016/S0065-3160(08)60109-4
  7. Goitein, R.; Bruice, T. C. J. Phys. Chem. 1972, 76, 432- 434. https://doi.org/10.1021/j100647a024
  8. Schleyer, P. v. R.; Harris, J. M. J. Am. Chem. Soc. 1971, 93, 4829-4834 https://doi.org/10.1021/ja00748a027
  9. Bentley, T. W.; Carter, G. E. J. Am. Chem. Soc. 1982, 104, 5741-5747. https://doi.org/10.1021/ja00385a031
  10. Bentley, T. W.; Schleyer, P. v. R. Adv. Phys. Org. Chem. 1977, 14, 1-68. https://doi.org/10.1016/S0065-3160(08)60107-0
  11. Kevill, D. N.; Bahari, M. S.; Anderson, S. W. J. Am. Chem. Soc. 1984, 106, 2895-2901. https://doi.org/10.1021/ja00322a026
  12. Lee, Y. W.; Seong, M. H.; Kyuong, J. B.; Kevill, D. N. Bull. Korean Chem. Soc. 2010, 31, 3366-3370. https://doi.org/10.5012/bkcs.2010.31.11.3366
  13. Seong, M. H.; Choi, S. H.; Lee, Y. W.; Kyong, J. B.; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc. 2009, 30, 2408-2412. https://doi.org/10.5012/bkcs.2009.30.10.2408
  14. D'Souza, M. J.; Reed, D. N.; Erdman, K. J.; Kyong, J. B.; Kevill, D. N. Int. J. Mol. Sci. 2009, 10, 862-879. https://doi.org/10.3390/ijms10030862
  15. Kyong, J. B.; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc. 2007, 28, 657-661. https://doi.org/10.5012/bkcs.2007.28.4.657
  16. Kevill, D. N.; Kyong, J. B. J. Org. Chem. 1992, 57, 258-265. https://doi.org/10.1021/jo00027a046
  17. Kevill, D. N.; Kyong, J. B.; Weitl, F. L. J. Org. Chem. 1990, 55, 4304-4311. https://doi.org/10.1021/jo00301a019
  18. Kim, R.; Ali, D.; Lee, J. P.; Yang, K.; Koo, I. S. Bull. Korean Chem. Soc. 2010, 31, 1963-1967. https://doi.org/10.5012/bkcs.2010.31.7.1963
  19. Koo, I. S.; Kwon, E.; Choi, H.; Yang, K.; Park, J. K.; Lee, J. P.; Lee, I.; Bentley, Y. W. Bull. Korean Chem. Soc. 2007, 28, 2377-2381. https://doi.org/10.5012/bkcs.2007.28.12.2377
  20. Koo, I. S.; Bentley, T. W.; Kang, D. H.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1991, 173.
  21. Maeda, H.; Irie, M.; Than, S.; Kikukawa, K.; Mishima, M. Bull. Chem. Soc. Jpn. 2007, 80, 195-203. https://doi.org/10.1246/bcsj.80.195
  22. Mishima, M.; Maeda, H.; Than, S.; Irie, M.; Kikukawa, K. J. Phys. Org. Chem. 2006, 19, 616-623. https://doi.org/10.1002/poc.1104
  23. Fujio, M.; Alam, M. A.; Umezaki, Y.; Kikukawa, K.; Fujiyama, R.; Tsuno, Y. Bull. Chem. Soc. Jpn. 2007, 80, 2378-2383. https://doi.org/10.1246/bcsj.80.2378
  24. Fujio, M.; Umezaki, Y.; Alam, M. A.; Kikukawa, K.; Fujiyama, R.; Tsuno, Y. Bull. Chem. Soc. Jpn. 2006, 79, 1091-1099. https://doi.org/10.1246/bcsj.79.1091
  25. Buncel, E.; Um, I. H. Chem. Commun. 1986, 595-596.
  26. Um, I. H.; Buncel, E. J. Org. Chem. 2000, 65, 577-582. https://doi.org/10.1021/jo9915776
  27. Um, I. H.; Hwang, S. J.; Buncel, E. J. Org. Chem. 2006, 71, 915- 920. https://doi.org/10.1021/jo051823f
  28. Um, I. H.; Shin, Y. H.; Han, J. Y.; Buncel, E. Can. J. Chem. 2006, 84, 1550-1556. https://doi.org/10.1139/v06-156
  29. Um, I. H.; Park, Y. M.; Buncel, E. Chem. Commun. 2000, 1917- 1918.
  30. Um, I. H.; Hong, J. Y.; Buncel, E. Chem. Commun. 2001, 27-28.
  31. Um, I. H.; Lee, E. J.; Buncel, E. J. Org. Chem. 2001, 66, 4859-4864. https://doi.org/10.1021/jo0156114
  32. Um, I. H.; Lee, E. J.; Seok, J. A.; Kim, K. H. J. Org. Chem. 2005, 70, 7530-7536. https://doi.org/10.1021/jo050624t
  33. Um, I. H.; Buncel, E. J. Am. Chem. Soc. 2001, 123, 11111-11112. https://doi.org/10.1021/ja016917v
  34. Um, I. H.; Han, J. Y.; Buncel, E. Chem. Eur. J. 2009, 15, 1011-1017. https://doi.org/10.1002/chem.200801534
  35. Jencks, W. P.; Chem. Rev. 1985, 85, 511-527. https://doi.org/10.1021/cr00070a001
  36. Castro, E. A.; Chem. Rev. 1999, 99, 3505-3524. https://doi.org/10.1021/cr990001d
  37. Page, M. I.; Williams, A. Organic and Bio-organic Mechanisms; Longman: Singapore, 1997; Chapter 7.
  38. Castro, E. A.; Gazitua, M; Santos, J. G. J. Phys. Org. Chem. 2010, 23, 176-180.
  39. Castro, E. A.; Aliaga, M.; Campodonico, P. R.; Cepeda, M.; Contreras, R.; Santos, J. G. J. Org. Chem. 2009, 74, 9173-9179. https://doi.org/10.1021/jo902005y
  40. Castro, E. A.; Ramos, M.; Santos, J. G. J. Org. Chem. 2009, 74, 6374-6377. https://doi.org/10.1021/jo901137f
  41. Castro, E. A. Pure Appl. Chem. 2009, 81, 685-696. https://doi.org/10.1351/PAC-CON-08-08-11
  42. Castro, E. A.; Aliaga, M.; Santos, J. G. J. Phys. Org. Chem. 2008, 21, 271-278. https://doi.org/10.1002/poc.1312
  43. Castro, E. A.; Aliaga, M.; Santos, J. G. J. Org. Chem. 2005, 70, 2679-2685. https://doi.org/10.1021/jo047742l
  44. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Org. Chem. 2005, 70, 8088- 8092. https://doi.org/10.1021/jo051168b
  45. Oh, H. K.; Lee, H. Bull. Korean Chem. Soc. 2010, 31, 475- 478. https://doi.org/10.5012/bkcs.2010.31.02.475
  46. Oh, H. K.; Hong, S. K. Bull. Korean Chem. Soc. 2009, 30, 2453-2456. https://doi.org/10.5012/bkcs.2009.30.10.2453
  47. H. K.; Jeong, K. S. Bull. Korean Chem. Soc. 2009, 30, 253-256. https://doi.org/10.5012/bkcs.2009.30.1.253
  48. Oh, H. K.; Jeong, K. S. Bull. Korean Chem. Soc. 2008, 29, 1621-1623. https://doi.org/10.5012/bkcs.2008.29.8.1621
  49. Oh, H. K.; Oh, J. Y.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 5624-5629. https://doi.org/10.1021/jo050606b
  50. Sung, D. D.; Jang, H. M.; Jung, D. I.; Lee, I. J. Phys. Org. Chem. 2008, 21, 1014-1019. https://doi.org/10.1002/poc.1418
  51. Menger, F. M.; Smith, J. H. J. Am. Chem. Soc. 1972, 94, 3824- 3829. https://doi.org/10.1021/ja00766a027
  52. Maude, A. B.; Williams, A. J. Chem. Soc., Perkin Trans. 1997, 2, 179-183.
  53. Um, I. H.; Min, J. S.; Ahn, J. A.; Hahn, H. J. J. Org. Chem. 2000, 65, 5659-5663. https://doi.org/10.1021/jo000482x
  54. Um, I. H.; Chung, E. K.; Lee, S. M. Can. J. Chem. 1998, 76, 729-737.
  55. Um, I. H.; Lee, S. E.; Kwon, H. J. J. Org. Chem. 2002, 67, 8999-9005. https://doi.org/10.1021/jo0259360
  56. Um, I. H.; Seck, J. A.; Kim, H. T.; Bae, S. K. J. Org. Chem. 2003, 68, 7742-7746. https://doi.org/10.1021/jo034637n
  57. Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 7788-7791. https://doi.org/10.1021/jo051052f
  58. Um, I. H.; Ahn, J. A.; Park, Y. M. Bull. Korean Chem. Soc. 2009, 30, 214-218. https://doi.org/10.5012/bkcs.2009.30.1.214
  59. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6970- 6980. https://doi.org/10.1021/ja00463a033
  60. Castro, E. A.; Santander, C. L. J. Org. Chem. 1985, 50, 3595- 3600. https://doi.org/10.1021/jo00219a029
  61. Castro, E. A.; Valdivia, J. L. J. Org. Chem. 1986, 51, 1668-1672. https://doi.org/10.1021/jo00360a007
  62. Castro, E. A.; Steinfort, G. B. J. Chem. Soc., Perkin Trans. 2 1983, 453-457.
  63. Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 3530-3536. https://doi.org/10.1021/jo050119w
  64. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 8995-8998. https://doi.org/10.1021/jo0264269
  65. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 3874-3877. https://doi.org/10.1021/jo025637a
  66. Oh, H. K.; Kim, S. K.; Lee, H. W.; Lee, I. New J. Chem. 2001, 25, 313-317. https://doi.org/10.1039/b006974o
  67. Um, I. H.; Im, L. R.; Kim, E. H.; Shin, J. H. Org. Biomol. Chem. 2010, 8, 3801-3806. https://doi.org/10.1039/c0ob00031k
  68. Um, I. H.; Lee, J. Y.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006, 71, 5800-5803. https://doi.org/10.1021/jo0606958
  69. Um, I. H.; Kim, K. H.; Park, H. R.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3937-3942. https://doi.org/10.1021/jo049694a
  70. Um, I. H.; Min, J. S.; Lee, H. W. Can. J. Chem. 1999, 77, 659-666. https://doi.org/10.1139/v99-046
  71. Um, I. H.; Han, J. Y.; Shin, Y. H. J. Org. Chem. 2009, 74, 3073-3078. https://doi.org/10.1021/jo900219t
  72. Um, I. H.; Yoon, S.; Park, H. R.; Han, H. J. Org. Biomol. Chem. 2008, 6, 1618-1624. https://doi.org/10.1039/b801422a
  73. Um, I. H.; Hwang, S. J.; Yoon, S.; Jeon, S. E.; Bae, S. K. J. Org. Chem. 2008, 73, 7671- 7677. https://doi.org/10.1021/jo801539w
  74. Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem. 2007, 72, 3823-3829. https://doi.org/10.1021/jo070171n
  75. Um, I. H.; Kim, E. Y.; Park, H. R.; Jeon, S. E. J. Org. Chem. 2006, 71, 2302-2306. https://doi.org/10.1021/jo052417z
  76. Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715-7720. https://doi.org/10.1021/jo061308x
  77. Um, I. H.; Chun, S. M.; Chae, O. M.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3166-3172. https://doi.org/10.1021/jo049812u
  78. Kim, S. I.; Baek, H. W.; Um, I. H. Bull. Korean Chem. Soc. 2009, 30, 2909-2912. https://doi.org/10.5012/bkcs.2009.30.12.2909
  79. Spillane, W. J.; McGrath, P.; Brack, C.; O'Byrne, A. B. J. Org. Chem. 2001, 66, 6313-6316. https://doi.org/10.1021/jo015691b
  80. Um, I. H.; Shin, E. H.; Kwon, D. S. Bull. Korean Chem. Soc. 1996, 17, 234-239.
  81. Bell, R. P. The Proton in Chemistry; Methuen: London, 1959; p 159.
  82. Trummal, A.; Rummel, A.; Lippmaa, E.; Burk, P.; Koppel, I. J. Phys. Chem. 2009, 113, 6206-6212. https://doi.org/10.1021/jp900750u

Cited by

  1. Theoretical estimation of kinetic parameters for nucleophilic substitution reactions in solution: an application of a solution translational entropy model vol.18, pp.8, 2016, https://doi.org/10.1039/C5CP07803B