DOI QR코드

DOI QR Code

Highly Efficient Multi-Functional Material for Organic Light-Emitting Diodes; Hole Transporting Material, Blue and White Light Emitter

  • Kim, Myoung-Ki (Department of Chemistry, College of Natural Sciences, Seoul National University) ;
  • Kwon, Jong-Chul (Department of Chemistry, College of Natural Sciences, Seoul National University) ;
  • Hong, Jung-Pyo (Department of Chemistry, College of Natural Sciences, Seoul National University) ;
  • Lee, Seong-Hoon (Department of Chemistry, College of Natural Sciences, Seoul National University) ;
  • Hong, Jong-In (Department of Chemistry, College of Natural Sciences, Seoul National University)
  • Received : 2010.12.02
  • Accepted : 2010.12.20
  • Published : 2011.08.20

Abstract

We have demonstrated that TPyPA can be used as an efficient multi-functional material for OLEDs; hole transporting material (HTL), blue and white-light emitter. The device based on TPyPA as the HTL exhibited an external quantum efficiency of 1.7% and a luminance efficiency of 4.2 cd/A; these values are 40% higher than the external quantum efficiency and luminance efficiency of the NPD-based reference device. The device based on TPyPA as a blue-light emitter exhibited an external quantum efficiency of 4.2% and a luminance efficiency of 5.3 $cdA^{-1}$ with CIE coordinates at (0.16, 0.14), the device based on TPyPA as a white-light emitter exhibited an external quantum efficiency of 3.2% and a luminance efficiency of 7.7 $cdA^{-1}$ with CIE coordinates at (0.33, 0.39). Also, TPyPA-based organic solar cell (OSC) exhibited a maximum power conversion efficiency of 0.35%. TPyPA-based organic thin-film transistors (OTFTs) exhibited highly efficient field-effect mobility (${\mu}_{FET}$) of $1.7{\times}10^{-4}cm^2V^{-1}s^{-1}$, a threshold voltage ($V_{th}$) of -15.9 V, and an on/off current ratio of $8.6{\times}10^3$.

Keywords

References

  1. Bevilacqua, P. C.; Kierzek, R.; Johnson, K. A.; Turner, D. H. Science 1992, 258, 1355. https://doi.org/10.1126/science.1455230
  2. Winnik, F. M. Chem. Rev. 1993, 93, 587. https://doi.org/10.1021/cr00018a001
  3. Yang, R.-H.; Lee, W.-H.; Chan, A. W.; Xia, M. P.-F.; Zhang, H.-K.; Li, K. A. J. Am. Chem. Soc. 2003, 125, 2884. https://doi.org/10.1021/ja029253d
  4. Langenegger, S. M.; Haner, R. Chem. Commun. 2004, 24, 2792.
  5. Cuquerella, M. C.; Amrani, S. E.; Miranda, M. A.; Perez-Prieto, J. J. Org. Chem. 2009, 74, 3232. https://doi.org/10.1021/jo900356c
  6. Lucas, L. A.; Longchamp, D. M. D.; Richter, L. J.; Kline, R. J.; Fischer, D. A.; Kaafarani, B. R.; Jabbour, G. E. Chem. Mater. 2008, 20, 5743. https://doi.org/10.1021/cm702802w
  7. Altamirano, M. S.; Bohorquez, M. V.; Previtali, C. M.; Chesta, C. A. J. Phys. Chem. A 2008, 112, 589. https://doi.org/10.1021/jp076294t
  8. Sun, B.; Dreger, Z. A.; Gupta, Y. M. J. Phys. Chem. A 2008, 112, 10546. https://doi.org/10.1021/jp806382x
  9. Yang, Q.; Shuai, L.; Zhou, J.; Lu, F.; Pan, X. J. Phys. Chem. B 2008, 112, 12934. https://doi.org/10.1021/jp805424f
  10. Honcharenko, D.; Zhou, C.; Chattopadhyaya, J. J. Org. Chem. 2008, 73, 2829. https://doi.org/10.1021/jo702747w
  11. Kannaiyan, D.; Imae, T. J. Phys. Chem. B 2008, 112, 12934. https://doi.org/10.1021/jp805424f
  12. Wu, K.-C.; Ku, P.-J.; Lin, C.-S.; Shih, H.-T.; Wu, F.-I.; Huang, M.-J.; Lin, J.-J.; Chen, I.-C.; Cheng, C.-H. Adv. Funct. Mater. 2008, 18, 67. https://doi.org/10.1002/adfm.200700803
  13. Tao, S.; Z. Y.; Lee, C.-S.; Lee, S.-T.; Huang, D.; Zhang, X. J. Phys. Chem. C 2008, 112, 14603. https://doi.org/10.1021/jp803957p
  14. Tang, C.; Liu, F.; Xia, Y.-J.; Xie, L.-H.; Wei, A.; Li, S.-B.; Fanab, Q.-L.; Huang, W. J. Mater. Chem. 2006, 16, 4.
  15. Mikroyannidis, J. A.; Fenenko, L.; Adachi, C. J. Phys. Chem. B 2006, 110, 20317. https://doi.org/10.1021/jp0631477
  16. Peng, Z.; Tao, S.; Zhang, X.; Tang, J.; Lee, C. S.; Lee, S.-T. J. Phys. Chem. C 2008, 112, 2165. https://doi.org/10.1021/jp074834g
  17. Liu, F.; Tang, C.; Chen, Q.-Q.; Shi, F.-F.; Wu, H.-B.; Xie, L.- H.; Peng, B.; Cao, Y.; Huang, W. J. Phys. Chem. C 2009, 113, 4641. https://doi.org/10.1021/jp8090073
  18. Jia, W.-L.; Cormick, T. M.; Liu, Q.-D.; Fukutani, H.; Motala, M.; Wang, R.-Y.; Tao, Y.; Wang, S. J. Mater. Chem. 2004, 14, 334.
  19. Shirota, Y.; J. Mater. Chem. 2000, 10, 1. https://doi.org/10.1039/a908130e
  20. Jia, W. L.; Bai, D. R.; McCormick, T.; Liu, Q. D.; Motala, M.; Wang, R. Y.; Seward, C.; Tao. Y.; Wang, S. Chem. Eur. J. 2004, 4, 994.
  21. Cravino, A.; Roquet, S.; Aleveque, O.; Leriche, P.; Frere, P. J. Chem. Mater. 2006, 18, 2584. https://doi.org/10.1021/cm060257h
  22. Lu, J.; Xia, P. F.; Lo, P. K.; Tao, Y.; Wong, M. S. Chem. Mater. 2006, 18, 6194. https://doi.org/10.1021/cm062111o
  23. Tong, Q.-X.; Lai, S.-L.; Chan, M.-Y.; Tang, J.-X.; Kwon, H.-L.; Lee, C.-S.; Lee, S.-T. Appl. Phys. Lett. 2007, 91, 023503. https://doi.org/10.1063/1.2756137
  24. Berggren, M.; Nilsson, D.; Robinson, N. D. Nature Mater. 2007, 6, 4.
  25. Shirota, Y.; Kinoshita, M.; Noda, T.; Okumoto, K.; Ohara, T. J. Am. Chem. Soc. 2000, 122, 11.
  26. Kinoshita, M.; Kita, H.; Shirota, Y. Adv. Funct. Mater. 2002, 12, 780. https://doi.org/10.1002/adfm.200290007
  27. Doi, H.; Kinoshita, M.; Okumoto, K.; Shirota, Y. Chem. Mater. 2003, 15, 1080. https://doi.org/10.1021/cm020948n
  28. Dawson, W. R.; Windsor, M. W. J. Phys. Chem. 1968, 72, 3255.
  29. Fadhel, O.; Gras, M.; Lemaitre, N.; Deborde, V.; Hissler, M.; Geffroy, B.; Reau, R. Adv. Mater. 2009, 21, 1261. https://doi.org/10.1002/adma.200801913
  30. Tao, S.; Zhou, Y.; Lee, C.-S.; Lee, S.-T.; Huangc, D.; Zhang, X. J. Mater. Chem. 2008, 18, 3981. https://doi.org/10.1039/b800985f
  31. Liu, Y.; Nishiura, M.; Wang, Y.; Hou, Z. J. Am. Chem. Soc. 2006, 128, 5592. https://doi.org/10.1021/ja058188f
  32. Li, C.-L.; Su, Y.-J.; Tao, Y.-T.; Chou, P.-T.; Chien, C.-H.; Cheng, C.-C.; Liu, R. -S. Adv. Funct. Mater. 2005, 15, 387. https://doi.org/10.1002/adfm.200305100
  33. Sun, Y.; Giebink, N. C.; Kanno, H.; Ma, B.; Thompson, M. E.; Forrest, S. R. Nature 2006, 440, 908. https://doi.org/10.1038/nature04645
  34. Chen, P.; Xue, Q.; Xie, W.; Duan, Y.; Xie, G.; Zhao, Y.; Hou, J.; Liu, S.; Zhang, L.; Li, B. Appl. Phys. Lett. 2008, 93, 153508. https://doi.org/10.1063/1.2998598
  35. Tao, S.; Lee, C. S.; Lee, S. T.; Zhang, X. Appl. Phys. Lett. 2007, 91, 013507. https://doi.org/10.1063/1.2742289
  36. Su, S. J.; Sasabe, H.; Takeda, T.; Kido, J. Chem. Mater. 2008, 20, 1691. https://doi.org/10.1021/cm703682q

Cited by

  1. A Multifunctional Material Based on Triphenylamine and a Naphthyl Unit for Organic Light-Emitting Diodes, Organic Solar Cells, and Organic Thin-Film Transistors vol.34, pp.5, 2013, https://doi.org/10.5012/bkcs.2013.34.5.1355
  2. New core-pyrene π structure organophotocatalysts usable as highly efficient photoinitiators vol.9, pp.None, 2013, https://doi.org/10.3762/bjoc.9.101