DOI QR코드

DOI QR Code

Dynamic Magnetostriction Characteristics of an Fe-Based Nanocrystalline FeCuNbSiB Alloy

  • Chen, Lei (College of Optoelectronic Engineering, Chongqing University, The Key Laboratory for Optoelectronic Technology & Systems, Ministry of Education) ;
  • Li, Ping (College of Optoelectronic Engineering, Chongqing University, The Key Laboratory for Optoelectronic Technology & Systems, Ministry of Education) ;
  • Wen, Yumei (College of Optoelectronic Engineering, Chongqing University, The Key Laboratory for Optoelectronic Technology & Systems, Ministry of Education)
  • Received : 2011.03.25
  • Accepted : 2011.07.28
  • Published : 2011.09.30

Abstract

The dynamic magnetostriction characteristics of an Fe-based nanocrystalline FeCuNbSiB alloy are investigated as a function of the dc bias magnetic field. The experimental results show that the piezomagnetic coefficient of FeCuNbSiB is about 2.1 times higher than that of Terfenol-D at the low dc magnetic bias $H_{dc}$ = 46 Oe. Moreover, FeCuNbSiB has a large resonant dynamic strain coefficient at quite low Hdc due to a high mechanical quality factor, which is 3-5 times greater than that of Terfenol-D at the same low $H_{dc}$. Based on such magnetostriction characteristics, we fabricate a new type of transducer with FeCuNbSiB/PZT-8/FeCuNbSiB. Its maximum resonant magnetoelectric voltage coefficient achieves ~10 V/Oe. The ME output power reaches 331.8 ${\mu}W$ at an optimum load resistance of 7 $k{\Omega}$ under 0.4 Oe ac magnetic field, which is 50 times higher than that of the previous ultrasonic-horn-substrate composite transducer and it decreases the size by nearly 86%. The performance indicate that the FeCuNbSiB/PZT-8/FeCuNbSiB transducer is promising for application in highly efficient magnetoelectric energy conversion.

Keywords

References

  1. G. Engdahl, Magnetostrictive Materials Handbook, Academic Press San Diego (2000).
  2. A. Kolano-Burian, R. Kolano, M. Kowalczyk, J. Szynowski, M. Steczkowska-Kempka, and T. Kulik, J. Phys.: Conf. Ser. 144, 012062 (2009). https://doi.org/10.1088/1742-6596/144/1/012062
  3. A. G. Olabi and A. Grunwald, Mater. Design 29, 469 (2008). https://doi.org/10.1016/j.matdes.2006.12.016
  4. J. Lou, R. E. Insignares, Z. Cai, K. S. Ziemer, M. Liu, and N. X. Sun, Appl. Phys. Lett. 91, 182504 (2007). https://doi.org/10.1063/1.2804123
  5. S. X. Dong, J. Y. Zhai, J. F. Li, and D. Viehland, J. Appl. Phys. 89, 122903 (2006).
  6. S. Hong, J. G. Kim, and C. G. Kim, J. Magnetics 14, 71 (2009). https://doi.org/10.4283/JMAG.2009.14.2.071
  7. T. G. Lee, J. B. Kim, and T. H. Noh, J. Magnetics 14, 155 (2009). https://doi.org/10.4283/JMAG.2009.14.4.155
  8. S. Flohrer, R. Schäfer, and G. Herzer, J. Non-Cryst. Solids 354, 5097 (2008). https://doi.org/10.1016/j.jnoncrysol.2008.07.034
  9. Y. Yoshizawa, S. Oguma, and K. Yamauchi, J. Appl. Phys. 64, 6044 (1988). https://doi.org/10.1063/1.342149
  10. G. Herzer, IEEE Trans. Magn. 25, 3327 (1989). https://doi.org/10.1109/20.42292
  11. J. Y. Zhai, S. X. Dong, Z. P. Xing, J. F. Li, and D. Viehland, Appl. Phys. Lett. 89, 083507 (2006). https://doi.org/10.1063/1.2337996
  12. L. X. Bian, Y. M. Wen, P. Li, Q. L. Gao, and X. X. Liu, J. Magnetics 14, 2 (2009).
  13. B. D. Cullity, Introduction to Magnetic Materials, Addison-Wesley, Cambridge, MA (1972).
  14. F. Yang, Y. M. Wen, P. Li, M. Zheng, and L. X. Bian, Sensor Actuat. A 141, 129 (2008). https://doi.org/10.1016/j.sna.2007.08.004
  15. Y. J. Wang, S. W. Or, H. L. W Chan, X. Y. Zhao, and H. S. Luo, J. Appl. Phys. 103, 124511 (2008). https://doi.org/10.1063/1.2943267
  16. P. Li, Y. M Wen, and L. X Bian, Appl. Phys. Lett. 90, 022503 (2007). https://doi.org/10.1063/1.2431469