DOI QR코드

DOI QR Code

Preparation and Adsorption Properties of PA6/PSMA-OA Molecularly Imprinted Composite Membranes in Supercritical CO2

  • Zhang, Qing (CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China) ;
  • Zhang, Xingyuan (CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China) ;
  • Zhang, Wencheng (Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology) ;
  • Pan, Jian (Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology) ;
  • Liu, Ling (Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology) ;
  • Zhang, Haitao (Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology) ;
  • Zhao, Dong (CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China) ;
  • Li, Zhi (CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China)
  • Received : 2011.06.09
  • Accepted : 2011.07.27
  • Published : 2011.09.20

Abstract

Oleanolic acid (OA) as template molecule, polyamide-6 (PA6) as basement membrane and poly(styrene-comaleic acid) (PSMA) were used to prepare PA6/PSMA-OA molecularly imprinted composite membranes by phase inversion method in supercritical $CO_2$ ($ScCO_2$). The template molecule (OA), [poly(styrene-co-maleic anhydride) (PSMAH), PSMA, molecularly imprinted membranes (MIMs) imprinting OA and MIMs after elution were all characterized by Fourier transform infrared spectroscopy (FTIR). The conditions that were the mass ratio between PSMA and OA from 3:1 to 8:1, temperature of $ScCO_2$ from $35^{\circ}C$ to $50^{\circ}C$ and pressure of $ScCO_2$ 12 MPa to 17 MPa were studied. It was obtained the largest adsorption rate and purity of OA after adsorption of the resultant MIMs, 50.41% and 96.15% respectively. After using PA6 film and non-woven fabrics as basement membrane respectively, it was found that smaller aperture of PA6 was used as basement membrane, a higher adsorption rate and a higher purity of OA after adsorption of the MIMs were obtained, and so were the stability and reproducibility of the resultant MIMs. After template molecules being removed, the MIMs had effective selectivity hydrogen bonding to separately bind in the binary components to the template molecules-oleanolic acid.

Keywords

References

  1. Trotta, F.; Drioli, E.; Baggiani, C.; Lacopo, D. J. Membr. Sci. 2002, 201, 77-84. https://doi.org/10.1016/S0376-7388(01)00705-0
  2. Kobayashi, T.; Fukaya, T.; Abe, M.; Fujii, N. Langmuir 2002, 18, 2866-2872. https://doi.org/10.1021/la0106586
  3. Screenivasulu Reddy, P.; Kobayashi, T.; Abe, M.; Fujii, N. Eur. Polym. J. 2002, 38, 521-529. https://doi.org/10.1016/S0014-3057(01)00212-9
  4. Ramamoorthy, M.; Ulbricht, M. J. Membr. Sci. 2003, 217, 207- 214. https://doi.org/10.1016/S0376-7388(03)00133-9
  5. Hilal, N.; Kochkodan, V. J. Membr. Sci. 2003, 213, 97-113. https://doi.org/10.1016/S0376-7388(02)00516-1
  6. Piletsky, S.-A.; Matuschewski, H.; Schedler, U.; Wilpert, A.; Piletska, E.-V.; Thiele, T.-A.; Ulbricht, M. Macromolecules 2000, 33, 3092-3098. https://doi.org/10.1021/ma991087f
  7. Sergeyeva, T.-A.; Matuschewski, H.; Piletsky, S.-A.; Bendig, J.; Schedler, U.; Ulbricht, M. J. Chromatogr. A 2001, 907, 89-99. https://doi.org/10.1016/S0021-9673(00)01053-0
  8. Mathew-Krotz, J.; Shea, K. J. J. Am. Chem. Soc. 1996, 118, 8154- 8155. https://doi.org/10.1021/ja954066j
  9. Sergeyeva, T.-A.; Piletska, O.-V.; Piletsky, S.-A.; Sergeeva, L.- M.; Brovko, O.-O.; El'ska, G.-V. Mater. Sci. Eng., C 2008, 28, 1472-1479. https://doi.org/10.1016/j.msec.2008.04.006
  10. Berens, A.-R.; Huvard, G.-S.; Korsmeyer, R.-W.; Kunig, F.-W. J. Appl. Polym. Sci. 1992, 46, 231-242. https://doi.org/10.1002/app.1992.070460204
  11. von Schnitzler, J.; Eggers, R. J. Supercrit. Fluids 1999, 16, 81-92. https://doi.org/10.1016/S0896-8446(99)00020-0
  12. Sarrade, S.; Guizard, C.; Rios, G.-M. Sep. Purif. Technol. 2003, 32, 57-63. https://doi.org/10.1016/S1383-5866(03)00054-6
  13. Luna-Barcenas, G.; Kanakia, S.-K.; Sanchez, I.-C.; Johnston, K.- P. Polymer 1995, 36, 3173-3182. https://doi.org/10.1016/0032-3861(95)97881-F
  14. Watkins, J.-J.; McCarthy, T.-J. Macromolecules 1994, 27, 4845- 4847. https://doi.org/10.1021/ma00095a031
  15. Kung, E.; Lesser, A.-J.; McCarthy, T.-J. Macromolecules 1998, 31, 4160-4169. https://doi.org/10.1021/ma980140h
  16. Arora, K.-A.; Lesser, A.-J.; McCarthy, T.-J. Macromolecules 1999, 32, 2562-2568. https://doi.org/10.1021/ma981794t
  17. Wang, H.-Y.; Xia, S.-L.; Sun, H.; Liu, Y.-K.; Cao, S.-K.; Kobayashi, T. J. Chromatogr. B 2004, 804, 127-134. https://doi.org/10.1016/j.jchromb.2004.01.036
  18. Zhang, Q.; Kusunoki, T.; Xu, Q.; Wang, H.; Kobayashi, T. Anal. Bioanal. Chem. 2007, 388, 665-673. https://doi.org/10.1007/s00216-007-1252-9
  19. Kobayashi, T.; Leong, S.-S.; Zhang, Q. J. Appl. Polym. Sci. 2008, 108, 757-768. https://doi.org/10.1002/app.27734
  20. Herodez, S.-S.; Hadolin, M.; Skerget, M.; Knez, Z. Food Chem. 2003, 80, 275-282. https://doi.org/10.1016/S0308-8146(02)00382-5
  21. Liu, H.; Shi, Y.; Wang, D. Yang, G.; Yu, A.; Zhang, H. J. Pharm. Biomed. Anal. 2003, 32, 479-485. https://doi.org/10.1016/S0731-7085(03)00235-8

Cited by

  1. Molecularly Imprinted Membranes vol.2, pp.4, 2012, https://doi.org/10.3390/membranes2030440
  2. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011 vol.27, pp.6, 2014, https://doi.org/10.1002/jmr.2347
  3. Green Strategies for Molecularly Imprinted Polymer Development vol.10, pp.3, 2018, https://doi.org/10.3390/polym10030306