References
- Schwetlick, K. In Mechanisms of Polymer of Degradation and Stabillisation; Elsevier Applied Science, London, 1990; p 23-26.
- Schwetlick, K. Pure Appl. Chem. 1983, 55, 1629. https://doi.org/10.1351/pac198355101629
- Tiku, M. L.; Liesch, J. B.; Robertson, F. M. J. Immunol. 1990, 145, 690.
- Bax, B. E.; Alam, A. S.; Banerji, B.; Bax, C. M.; Bevis, P. J.; Stevens, C. R.; Moonga, B. S.; Blake, D. R.; Zaidi, M. Biochem. Biophys. Res. Commun. 1992, 183, 1153. https://doi.org/10.1016/S0006-291X(05)80311-0
- Bauerova, K.; Bezek, A. Gen. Physiol. Biophys. 1999, 18, 15.
- Edmonds, S. E.; Blake, D. R.; Morris, C. J.; Winyard, P. G. J. Rheumatol. 1993, 37, 26.
- Dellaria, J. F.; Maki, R. G.; Stein, H. H.; Cohen, J.; Whittern, D.; Marsh, K.; Hoffman, D. J.; Plattner, J. J.; Perun, T. J. J. Med. Chem. 1990, 33, 534. https://doi.org/10.1021/jm00164a011
- Bihovsky, R.; Tao, M.; Wells, G. J.; Mallamo, J. P. J. Med. Chem. 1998, 41, 3912. https://doi.org/10.1021/jm980325e
- Sikorski, J. A.; Miller, M. J.; Braccolino, D. S.; Cleary, D. G.; Corey, S. D.; Font, J. L.; Gruys, K. J.; Han, C. Y.; Lin, K. C.; Pansegrau, P. D.; Ream, J. E.; Schnur, D.; Shah, A.; Walker, M. C. Phosphorus, Sulfur and Silicon. 1993, 76, 375.
- Pompliano, D. L.; Rands, E.; Schaber, M. D.; Mosser, S. D.; Anthony, N. J.; Gibbs, J. B. Biochemistry 1992, 31, 3800. https://doi.org/10.1021/bi00130a010
- Stowasser, B.; Budt, K. H.; Li, J. Q.; Peyman, A.; Ruppert, D. Tetrahedron Lett. 1992, 33, 6625. https://doi.org/10.1016/S0040-4039(00)61002-X
- Snoeck, R.; Holy, A.; Dewolf-Peeters, C.; Van Den Oord, J.; De Clercq, E.; Andrei, G. Antimicrob. Agents Chemother. 2002, 46, 3356. https://doi.org/10.1128/AAC.46.11.3356-3361.2002
- Peters, M. L.; Leonard, M.; Licata, A. A. Clev. Clin. J. Med. 2001, 68, 945. https://doi.org/10.3949/ccjm.68.11.945
- Z.Leder, B.; Kronenberg, H. M. Gastroenterology 2000, 119, 866. https://doi.org/10.1053/gast.2000.17841
- Kafarski, P.; Lecjzak, B. J. Mol. Catal. B. 2004, 29, 99. https://doi.org/10.1016/j.molcatb.2003.12.013
- Maly, A.; Lecjzak, B.; Kafarski, P. Tetrahedron Asymm. 2003, 14, 1019. https://doi.org/10.1016/S0957-4166(03)00177-0
- Wynberg, H.; Smaardijk, A. A. Tetrahedron Lett. 1983, 24, 5899. https://doi.org/10.1016/S0040-4039(00)94232-1
- Smaardijk, A. A.; Noorda, S.; Van Bolhuis, F.; Wynberg, H. Tetrahedron Lett. 1985, 26, 493. https://doi.org/10.1016/S0040-4039(00)61920-2
- Akiyamam, T.; Morita, H.; Itoh, J.; Fuchibe, K. Org. Lett. 2005, 7, 2583. https://doi.org/10.1021/ol050695e
- Samanta, S.; Zhao, C. G. J. Am. Chem. Soc. 2006, 128, 7442. https://doi.org/10.1021/ja062091r
- Groaning, M. D.; Rowe, B. J.; Spilling, C. D. Tetrahedron Lett. 1998, 39, 5485. https://doi.org/10.1016/S0040-4039(98)01139-3
- Zhou, X.; Liu, X.; Shang, D.; Xin, J.; Feng, X. Angew. Chem., Int. Ed. 2008, 47, 392. https://doi.org/10.1002/anie.200704116
- Saito, B.; Katsuki, T. Angew. Chem., Int. Ed. 2005, 44, 4600. https://doi.org/10.1002/anie.200501008
- Duxbury, J. P.; Cawley, A.; Pett-Thornton, M.; Wantz, L.; Warne, J. N. D.; Greatrex, R.; Brown, D.; Kee, T. P. Tetrahedron Lett. 1999, 40, 4403. https://doi.org/10.1016/S0040-4039(99)00738-8
- Duxbury, J. P.; Warne, J. N. D.; Mushtaq, R.; Ward, W.; Pett-Thornton, M.; Jiang, M.; Greatrex, R.; Kee, T. P. Organometallics. 2000, 19, 4445. https://doi.org/10.1021/om000386m
- Arai, T.; Bougauchi, M.; Sasai, H.; Shibaski, M. J. Org. Chem. 1996, 61, 2926. https://doi.org/10.1021/jo960180o
- Texier-Boullet, F.; Lequitte, M. Tetrahedron Lett. 1986, 27, 3515. https://doi.org/10.1016/S0040-4039(00)84837-6
- Villemin, D.; Racha, R. Tetrahedron Lett. 1986, 27, 1789. https://doi.org/10.1016/S0040-4039(00)84375-0
- Swapnil, S. S.; Amol, H. K.; Madhav, N. W.; Charansingh, H. G.; Bapurao, B. S.; Murlidhar, S. S. Arkivoc. 2009, ii, 138.
- Simoni, D.; Rondanin, R.; Morini, M.; Baruchello, R.; Lnvidiata, F. P. Tetrahedron Lett. 2000, 41, 1607. https://doi.org/10.1016/S0040-4039(99)02340-0
- Alexander Christopher, W.; Philip Albiniak, A.; Lisa Gibson, R. Phosphorus, Sulfur and Silicon Relat. Elem. 2000, 167, 205. https://doi.org/10.1080/10426500008082399
- Kumar, R. S.; Nagarajan, R.; Perumal, P. T. Synthesis 2004, 6, 949.
- Nagarajan, R.; Perumal, P. T. Chem. Lett. 2004, 33, 288. https://doi.org/10.1246/cl.2004.288
- Chandra Sekhar Reddy, G.; Veera Narayana Reddy, M.; Bakthavatchala Reddy, N.; Suresh Reddy, C. Phosphorus, Sulfur and Siliion. 2011, 186, 74.
- Veera Narayana Reddy, M.; Bala Krishna, A.; Suresh Reddy, C. Eur. J. of Med.Chem. 2010, 45, 1828. https://doi.org/10.1016/j.ejmech.2010.01.019
- Tajbakhsh, Md.; Heydari, A.; Khalilzadeh, M. A.; Lakouraj, M. M.; Zamenian, B.; Khaksar, S. Synlett. 2007, 15, 2347.
- Veera Narayana Reddy, M.; Balakrishna, A.; Anil Kumar, M.; Chandra Sekhar Reddy, G.; Uma Ravi Sankar, A.; Suresh Reddy, C.; Murali Krishna, T. Chem. Pharm. Bull. 2009, 57, 1391. https://doi.org/10.1248/cpb.57.1391
- Choi, C. W.; Kim, S. C.; Hwang, S. S.; choi, B. K.; Ahn, H. J.; Lee, M. Y.; Park, S. H.; Kim, S. K. Plant Sci. 2002, 153, 1161.
- Oyaizu, M. Jpn. J. Nutr. 1986, 44, 307. https://doi.org/10.5264/eiyogakuzashi.44.307
- Ohkawa, N.; Ohishi, K.; Yagi, K. Anal. Biochem. 1979, 95, 351. https://doi.org/10.1016/0003-2697(79)90738-3
Cited by
- ChemInform Abstract: Neat Synthesis and Antioxidant Activity of α-Hydroxyphosphonates. vol.43, pp.10, 2012, https://doi.org/10.1002/chin.201210196
- Amberlyst-15 Catalyzed Synthesis of α′-Oxindole-α-Hydroxyphosphonates under Ultrasonic Irradiation vol.188, pp.8, 2013, https://doi.org/10.1080/10426507.2012.736099
- Ultrasound-Promoted Synthesis of Biologically Active α-Hydroxyphosphonates/ Hydroxyphosphinates Using 1,4-Dimethylpiperazine as a Catalyst vol.189, pp.5, 2014, https://doi.org/10.1080/10426507.2013.843002
- -immobilized 1,5,7-triazabicyclo[4.4.0]dec-5-ene as a highly recyclable and efficient nanocatalyst for the synthesis of α′-oxindole-α-hydroxyphosphonates vol.28, pp.7, 2014, https://doi.org/10.1002/aoc.3147
- 2-Oxo promoted hydrophosphonylation & aerobic intramolecular nucleophilic displacement reaction vol.13, pp.32, 2015, https://doi.org/10.1039/C5OB01310K
- -oxindole-α-hydroxyphosphonates via phospha-aldol reaction of isatins employing N-heterocyclic phosphine (NHP)-thiourea vol.14, pp.38, 2016, https://doi.org/10.1039/C6OB01608A
- Green synthesis and cytotoxic activity of dibenzyl α-hydroxyphosphonates and α-hydroxyphosphonic acids pp.10427163, 2018, https://doi.org/10.1002/hc.21436
- Synthesis and Reactions of α-Hydroxyphosphonates vol.23, pp.6, 2018, https://doi.org/10.3390/molecules23061493
- Rational synthesis of α-hydroxyphosphonic derivatives including dronic acids pp.1563-5325, 2019, https://doi.org/10.1080/10426507.2018.1555537
- Three-component 3-(phosphoryl)methylindole synthesis from indoles, H-phosphine oxides and carbonyl compounds under metal-free conditions vol.21, pp.4, 2019, https://doi.org/10.1039/C8GC03530J
- Ultrasonicated, Nano-ZnO Catalyzed Green Synthesis of α-Hydroxyphosphonates and their Antioxidant Activity vol.189, pp.10, 2011, https://doi.org/10.1080/10426507.2014.902832
- A Study on the Rearrangement of Dialkyl 1-Aryl-1-hydroxymethylphosphonates to Benzyl Phosphates vol.24, pp.None, 2011, https://doi.org/10.2174/1385272824666200226114306
- A Methodology Study of Hydrophosphonylation of Aldehydes Derivatives with H6P2W18O62•14H2O as a Catalyst vol.14, pp.2, 2011, https://doi.org/10.23939/chcht14.02.154