DOI QR코드

DOI QR Code

Salen-Aluminum Complexes as Host Materials for Red Phosphorescent Organic Light-Emitting Diodes

  • Received : 2011.06.11
  • Accepted : 2011.07.20
  • Published : 2011.09.20

Abstract

The properties of monomeric and dimeric salen-aluminum complexes, [salen(3,5-$^tBu)_2$Al(OR)], R = $OC_6H_4-p-C_6H_6$ (H1) and R = [salen(3,5-$^tBu$)AlOPh]C$(CH_3)_2$ (H2) (salen = N,N'-bis-(salicylidene)-ethylenediamine) as host layer materials in red phosphorescent organic light-emitting diodes (PhOLEDs) were investigated. H1 and H2 exhibit high thermal stability with decomposition temperature of 330 and $370^{\circ}C$. DSC analyses showed that the complexes form amorphous glasses upon cooling of melt samples with glass transition temperatures of 112 and $172^{\circ}C$. The HOMO (ca. -5.2~-5.3 eV) and LUMO (ca. -2.3~-2.4 eV) levels with a triplet energy of ca. 1.92 eV suggest that H1 and H2 are suitable for a host material for red emitters. The PhOLED devices based on H1 and H2 doped with a red emitter, $Ir(btp)_2$(acac) (btp = bis(2-(2'-benzothienyl)-pyridinato-N,$C^3$; acac = acetylacetonate) were fabricated by vacuum-deposition and solution process, respectively. The device based on vacuum-deposited H1 host displays high device performances in terms of brightness, luminous and quantum efficiencies comparable to those of the device based on a CBP (4,4'-bis(Ncarbazolyl) biphenyl) host while the solution-processed device with H2 host shows poor performance.

Keywords

References

  1. Baldo, M. A.; O'Brien, D. F.; You Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature (London) 1998, 395, 151. https://doi.org/10.1038/25954
  2. Wong, W.-Y.; Ho, C.-L.; Gao, Z.-Q.; Mi, B.-X.; Chen, C.-H.; Cheah, K.-W.; Lin, Z. Angew. Chem. Int. Ed. 2006, 45, 7800. https://doi.org/10.1002/anie.200602906
  3. Ikai, M.; Tokito, S.; Sakamoto, Y.; Suzuki, T.; Taga, Y. Appl. Phys. Lett. 2001, 79, 156. https://doi.org/10.1063/1.1385182
  4. Adachi, C.; Kwong, Djurovich, R. P.; Adamovich, V.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 2001, 79, 2082. https://doi.org/10.1063/1.1400076
  5. Kwong, R. C.; Nugent, M. R.; Michalski, L.; Ngo, T.; Rajan, K.; Tung, Y.-J.; Weaver, M. S.; Zhou, T. X.; Hack, M.; Thompson, M. E.; Forrest, S. R.; Brown, J. J. Appl. Phys. Lett. 2002, 81, 162. https://doi.org/10.1063/1.1489503
  6. Ren, X.; Li, J.; Holmes, R. J.; Djurovich, P. I.; Forrest, S. R.; Thompson, M. E. Chem. Mater. 2004, 16, 4743. https://doi.org/10.1021/cm049402m
  7. Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H.-E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. J. Am. Chem. Soc. 2001, 123, 4304. https://doi.org/10.1021/ja003693s
  8. O'Brien, D. F.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 1999, 74, 442. https://doi.org/10.1063/1.123055
  9. Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 1999,75, 4. https://doi.org/10.1063/1.124258
  10. Adachi, C.; Baldo, M. A.; Forrest, S. R.; Lamansky, S. L.; Thomapson, M. E.; Kwong, R. C. Appl. Phys. Lett. 2001, 78, 1622. https://doi.org/10.1063/1.1355007
  11. Tsuzuki, T.; Tokito, S. Adv. Mater. 2007, 90, 276.
  12. Jeon, W.-S.; Park, T.-J.; Park, J.-J.; Pode, R.; Jang, J.; Kwon, J.-H. Org. Electron. 2009, 10, 240. https://doi.org/10.1016/j.orgel.2008.11.012
  13. Gong, X.; Ostrowski, J. C.; Moses, D.; Bazan, G. C.; Heeger, A. J. Adv. Funct. Mat. 2003, 13, 439. https://doi.org/10.1002/adfm.200304334
  14. Kanno, H.; Ishikawa, K.; Nishio, Y.; Endo, A.; Adachi, C.; Shibata, K. Appl. Phys. Lett. 2007, 90, 123509. https://doi.org/10.1063/1.2643908
  15. Hwang, K. Y.; Lee, M. H.; Jang, H.; Sung, Y.; Lee, J. S.; Kim, S. H.; Do, Y. Dalton Trans. 2008, 1818.
  16. Hwang, K. Y.; Kim, H.; Lee, Y. S; Lee, M. H.; Do, Y. Chem. Eur. J. 2009, 15, 6478. https://doi.org/10.1002/chem.200900137
  17. Huh, J. O.; Lee, M. H.; Jang, H.; Hwang, K. Y.; Lee, J. S.; Kim, S. H.; Do, Y. Inorg. Chem. 2008, 47, 6566. https://doi.org/10.1021/ic8002806
  18. Ho, C.-L.; Wong, W.-Y.; Gao, Z.-Q.; Chen, C.-H.; Cheah, K.-W.; Yao, B.; Xie, Z. Y.; Wang, Q.; Ma, D. G.; Wang, L. X.; Yu, X.-M.; Kwok, H.-S.; Lin, Z. Y. Adv. Funct. Mater. 2008, 18, 319. https://doi.org/10.1002/adfm.200700665
  19. Ge, Z. Y.; Hayakawa, T.; Ando, S.; Ueda, M.; Akiike, T.; Miyamoto, H.; Kajita, T.; Kakimoto, M. Adv. Funct. Mater. 2008, 18, 584. https://doi.org/10.1002/adfm.200700913
  20. Rehmann, N.; Hertel, D.; Meerholz, K.; Becker, H.; Heun, S. Appl. Phys. Lett. 2007, 91, 103507. https://doi.org/10.1063/1.2775323
  21. Hou, L. D.; Duan, L.; Qiao, J.; Li, W.; Zhang, D. Q.; Qiu, Y. Appl. Phys. Lett. 2008, 92, 263301. https://doi.org/10.1063/1.2952483
  22. Tsai, M.-H.; Hong, Y.-H.; Chang, C.-H.; Su, H.-C.; Wu, C.-C.; Matoliukstyte, A.; Simokaitiene, J.; Grigalevicius, S.; Grazulevicius, J. V.; Hsu, C.-P. Adv. Mater. 2007, 19, 862. https://doi.org/10.1002/adma.200600822
  23. Santerre, F.; Bedjia, I.; Dodelet, J. P. Chem. Mater. 2001, 13, 1739. https://doi.org/10.1021/cm0009221
  24. Liou, G.-S.; Hsiao, S.-H.; Chen, W.-C.; Yen, H. J. Macromolecules 2006, 39, 6036. https://doi.org/10.1021/ma060205d
  25. Cozzi, P. G.; Dolci, L. S.; Garelli, A.; Montalti, M.; Prodi, L.; Zaccheroni, N. New J. Chem. 2003, 27, 692. https://doi.org/10.1039/b209396k
  26. Melhuish, W. H. J. Phys. Chem. 1961, 65, 229. https://doi.org/10.1021/j100820a009
  27. Jegier, J. A.; Munoz-Hernandez, M.-A.; Atwood, D. A. J. Chem. Soc., Dalton Trans. 1999, 2583.
  28. Gao, Z. Q.; Mi, B. X.; Tam, H. L.; Cheah, K. W.; Chen, C. H.; Wong, M. S.; Lee, S. T.; Lee, C. S. Adv. Mater. 2008, 20, 774. https://doi.org/10.1002/adma.200702343
  29. Tseng, R. J.; Chiechi, R. C.; Wudl, F.; Yang, Y. Appl. Phys. Lett. 2006, 88, 093512. https://doi.org/10.1063/1.2167814
  30. Sudhakar, M.; Djurovich, P. I.; Hogen-Esch, T. E.; Thompson, M. E. J. Am. Chem. Soc. 2009, 125, 7796.

Cited by

  1. Novel aluminum–BODIPY dyads: intriguing dual-emission via photoinduced energy transfer vol.45, pp.13, 2016, https://doi.org/10.1039/C5DT05067G
  2. Thermally Stable Zinc Disalphen Macrocycles Showing Solid-State and Aggregation-Induced Enhanced Emission vol.56, pp.10, 2017, https://doi.org/10.1021/acs.inorgchem.7b00300
  3. Synthesis and Photophysical Properties of ( CL 2 PH )Salen‐based Indium Complexes vol.41, pp.7, 2011, https://doi.org/10.1002/bkcs.12062