비닐트리에톡시실란 함량에 따른 습식실리카로 충전된 실리콘 고무의 기계적 및 물리적 물성

Effect of Vinyltriethoxysilane Content on Mechanical and Physical Properties of Precipitated Silica Reinforced Silicone Rubber

  • Jin, Sung-Hoon (Department of Chemical Engineering, Inha University) ;
  • Hong, Jin-Ho (Department of Chemical Engineering, Inha University) ;
  • Kim, Il (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University) ;
  • Yun, Ju-Ho (Enviromental Materials & Components R&D Center, Korea Automotive Technology Institute) ;
  • Shim, Sang-Eun (Department of Chemical Engineering, Inha University)
  • 투고 : 2011.01.30
  • 심사 : 2011.03.16
  • 발행 : 2011.07.25

초록

실리카의 표면 개질제인 vinyltriethoxysilane(VTEOS)의 함량에 따른 실리카로 보강된 실리콘 고무의 기계적 물성 변화 및 내열성, 내유성, 압축 영구줄음률, 반발탄성 및 가교밀도 변화를 연구하였다. 결과로 VTEOS의 함량이 2.0 phr까지 증가함에 따라 경도는 상승하였으나 인장강도 파단신율, 인열강도가 감소하였다. 내열시험에서는 VTEOS의 함량이 증가될수록 경도변화, 인장강도 변화율, 파단신율 변화율이 크게 감소하였다. VTEOS 2.0 phr에서 가장 우수한 내열특성을 나타내었다. 또한 VTEOS의 함량이 증가될수록 실리콘 고무의 내유성이 증진되었으며, VTEOS 미첨가 시보다 경도 하락폭이 크게 낮았으며, 파란신율 변화율은 약 2배 이상 감소하였다. 반발탄성도 VTEOS의 함량이 증가될수록 우수하였으며, 압축 영구줄음률 역시 VTEOS가 증가될수록 감소하였다. 가교실험 결과 VTEOS가 증가될수록 최대 토크값와 가교밀도가 크게 향상되었다.

The effect of the amount of vinyltriethoxysilane (VTEOS) in precipitated silica filled silicone rubbers was extensively investigated in terms of the change of mechanical properties, heat resistance, oil resistance, compression set, resilience, and curing characteristics. As the content of VTEOS increased from 0 to 2.0 phr, the hardness of the silicone rubber increased, however, tensile strength, elongation at break, and tear strength decreased. From heat resistance test, the change of mechanical properties was pronounced for silicone rubber treated with more VTOES. The best heat resistance was achieved at 2.0 phr VTOES. In addition, oil resistance was proportionally improved with VTEOS content. From oil resistance test. it was found that the decrease in hardness and maximum elongation was reduced for VTEOS-added systems. Finally, resilience, compression set, degree of cure and crosslink density were significantly enhanced with the amount of VTEOS.

키워드

참고문헌

  1. J. C. Caprino and R. F. Macander, Rubber Technology, 3rd Ed., M. Morton, Editor, Van Nostrand Reinhold, New York, Ch. 13 (1987)
  2. E. L. Warrick, Rubber Chem. Technol., 49, 909 (1976). https://doi.org/10.5254/1.3534994
  3. F. M. Lewis, Rubber Chem. Technol., 35, 1222 (1962). https://doi.org/10.5254/1.3539992
  4. W. Noll, Chemistry and Technology of Silicones, 2nd Ed., Academic Press, New York, p. 305 (1968).
  5. K. E. Polmanteer, Rubber Chem. Technol., 54, 1051 (1981). https://doi.org/10.5254/1.3535846
  6. K. E. Polmanteer, Rubber Chem. Technol., 61, 470 (1988). https://doi.org/10.5254/1.3536197
  7. S. Lee and J. S. Song, Elastom. Compos., 44, 2 (2009).
  8. B. Boonstra, H. Cochrane, and E. M. Dannenberg, Rubber Chem. Technol., 48, 558 (1975). https://doi.org/10.5254/1.3539660
  9. D. W. Southwart, Polymer, 17, 147 (1976). https://doi.org/10.1016/0032-3861(76)90085-9
  10. D. S. Bang, H. S. Kye, U. R. Cho, B. G. Min, and K. C. Shin, Elastom. Compos., 44, 1 (2009).
  11. A. S. Patole, S. P. Patole, M. H. Song, J. Y. Yoon, J. Kim, and T. H. Kim, Elastom. Compos., 44, 34 (2009).
  12. A. Yim, R. S. Chahal, and L. E. St. Pierre, J. Colloid Interface Sci., 43, 583 (1973). https://doi.org/10.1016/0021-9797(73)90406-2
  13. J. P. Allen, Elastomerics, 115, 35 (1983).
  14. R. K. Iler, The Colloid Chemistry and Silica and Silicates, Cornell University Press, Ithaca, New York, p. 234 (1955).
  15. M. P. Wagner, Rubber Chem. Technol., 49, 703 (1976). https://doi.org/10.5254/1.3534979
  16. P. Vondracek and M. Schatz, J. Appl. Polym. Sci., 21, 3211 (1977). https://doi.org/10.1002/app.1977.070211203
  17. G. L. Wituchi, J. Coat. Technol., 65, 57 (1993).
  18. B. M. Vogel, D. M. DeLongchamp, C. M. Mahoney, L. A. Lucas, D. A. Fischer, and E. K. Lin, Appl. Surf. Sci., 254, 1789 (2008). https://doi.org/10.1016/j.apsusc.2007.07.170
  19. H. Kim, H.-G. Kim, S. Kim, and S. S. Ki, J. Membrane Sci., 344, 211 (2009). https://doi.org/10.1016/j.memsci.2009.08.004
  20. K. T. Love, B. K. Nicholson, J. A. Lloyd, R. A. Franich, R. P. Kibblewhite, and S. D. Mansfield, Compos. Part A, 39, 1815 (2008). https://doi.org/10.1016/j.compositesa.2008.09.013
  21. C. Yoon, J. Lee, D. Bang, J. Won, I. Jang, and W. Park, Elastom. Compos., 45, 87 (2010).
  22. E. S. Kim, E. J. Kim, T. H. Lee, and J. S. Yoon, Elastom. Compos., 45, 260 (2009).
  23. P. J. Flory and J. Rehner, Jr., J. Chem. Phys., 18, 108 (1950). https://doi.org/10.1063/1.1747424
  24. G. Kraus, J. Appl. Polym. Sci., 7, 861 (1963). https://doi.org/10.1002/app.1963.070070306
  25. S. E. Shim and A. I. Isayev, Rubber Chem. Technol., 74, 303 (2001). https://doi.org/10.5254/1.3544952