Abstract
The importance of the real-time object recognition and tracking field has been growing steadily due to rapid advancement in the computer vision applications industry. As is well known, the mean-shift algorithm is widely used in robust real-time object tracking systems. Since the mentioned algorithm is easy to implement and efficient in object tracking computation, many say it is suitable to be applied to real-time object tracking systems. However, one of the major drawbacks of this algorithm is that it always converges to a local mode, failing to perform well in a cluttered environment. In this paper, an Optical Flow-based algorithm which fits for real-time recognition of multiple moving objects is proposed. Also in the tests, the newly proposed method contributed to raising the similarity of multiple moving objects, the similarity was as high as 0.96, up 13.4% over that of the mean-shift algorithm. Meanwhile, the level of pixel errors from using the new method keenly decreased by more than 50% over that from applying the mean-shift algorithm. If the data processing speed in the video surveillance systems can be reduced further, owing to improved algorithms for faster moving object recognition and tracking functions, we will be able to expect much more efficient intelligent systems in this industrial arena.
실시간 객체 인식 및 추적은 컴퓨터 비전 응용 산업이 발달하면서 그 중요성이 더해지고 있다. 객체 추적을 위해 많이 이용되고 있는 알고리즘으로 Mean-Shift 알고리즘이 있다. Mean-Shift 알고리즘을 기반으로 한 객체 추적 알고리즘은 구현이 간단하고, 적은 계산 복잡도를 갖는 장점이 있다. 따라서 실시간 객체 추적 시스템에 적합하다고 할 수 있지만, 지역 모드로의 수렴만을 보장하는 특성으로 인해 객체의 수가 많은 경우 좋은 성능을 나타내지 못하는 단점을 가지고 있다. 그러므로 본 논문에서는 다중 이동 객체를 실시간으로 추적하기 위한 광류기반의 움직임 추정 기법을 제안한다. 제안된 알고리즘의 성능을 확인하기 위해 다중 이동 객체의 인식 실험 결과 유사도는 0.96으로 기존의 Mean-Shift 알고리즘에 비해 약 13.4% 정도 유사도가 개선되었고 평균 픽셀 오류도 3.07로 또한 50% 이상 감소하였다. 향후 알고리즘을 개선하여 처리 속도를 더욱 줄임으로써 매우 빠른 이동 객체 인식과 상황 인지 알고리즘을 추가한다면 보다 효율적인 인식 및 추적 시스템을 구축할 수 있을 것으로 사료된다.