DOI QR코드

DOI QR Code

Real-time Recognition and Tracking System of Multiple Moving Objects

다중 이동 객체의 실시간 인식 및 추적 시스템

  • 박호식 (오산대학교 디지털전자과) ;
  • 배철수 (관동대학교 전자통신공학과)
  • Received : 2011.04.18
  • Accepted : 2011.06.23
  • Published : 2011.07.30

Abstract

The importance of the real-time object recognition and tracking field has been growing steadily due to rapid advancement in the computer vision applications industry. As is well known, the mean-shift algorithm is widely used in robust real-time object tracking systems. Since the mentioned algorithm is easy to implement and efficient in object tracking computation, many say it is suitable to be applied to real-time object tracking systems. However, one of the major drawbacks of this algorithm is that it always converges to a local mode, failing to perform well in a cluttered environment. In this paper, an Optical Flow-based algorithm which fits for real-time recognition of multiple moving objects is proposed. Also in the tests, the newly proposed method contributed to raising the similarity of multiple moving objects, the similarity was as high as 0.96, up 13.4% over that of the mean-shift algorithm. Meanwhile, the level of pixel errors from using the new method keenly decreased by more than 50% over that from applying the mean-shift algorithm. If the data processing speed in the video surveillance systems can be reduced further, owing to improved algorithms for faster moving object recognition and tracking functions, we will be able to expect much more efficient intelligent systems in this industrial arena.

실시간 객체 인식 및 추적은 컴퓨터 비전 응용 산업이 발달하면서 그 중요성이 더해지고 있다. 객체 추적을 위해 많이 이용되고 있는 알고리즘으로 Mean-Shift 알고리즘이 있다. Mean-Shift 알고리즘을 기반으로 한 객체 추적 알고리즘은 구현이 간단하고, 적은 계산 복잡도를 갖는 장점이 있다. 따라서 실시간 객체 추적 시스템에 적합하다고 할 수 있지만, 지역 모드로의 수렴만을 보장하는 특성으로 인해 객체의 수가 많은 경우 좋은 성능을 나타내지 못하는 단점을 가지고 있다. 그러므로 본 논문에서는 다중 이동 객체를 실시간으로 추적하기 위한 광류기반의 움직임 추정 기법을 제안한다. 제안된 알고리즘의 성능을 확인하기 위해 다중 이동 객체의 인식 실험 결과 유사도는 0.96으로 기존의 Mean-Shift 알고리즘에 비해 약 13.4% 정도 유사도가 개선되었고 평균 픽셀 오류도 3.07로 또한 50% 이상 감소하였다. 향후 알고리즘을 개선하여 처리 속도를 더욱 줄임으로써 매우 빠른 이동 객체 인식과 상황 인지 알고리즘을 추가한다면 보다 효율적인 인식 및 추적 시스템을 구축할 수 있을 것으로 사료된다.

Keywords

References

  1. Yeencheng Lee, Demetri Terzopoulos and Keith Waters, "Constructing Physics-Based Facial Models of Indiciduals", Fraphics Interface '93, pp.1-8, 1993.
  2. A. Bakowski, G.A. Jones, "Video Surveillance Tracking using Color region Adjacency Graphs", Image Processing and its Applications, Conference Publication No.465, 1999, pp.794-798
  3. Yusuke Takahashi, Toshio Kamei, "Object Tracking System with Active Camera", NEC Res. & Develop., Vol.43 No.1, 2002, pp.45-48
  4. Gian Luca Foresti, "Object Reconition and Tracking for Remote Video Surveillance", IEEE Trans. on Circuits & Systems for Video Technology, Vol.9 No.7, 1999, pp.1045-1062 https://doi.org/10.1109/76.795058
  5. Hai Tao, Harpreet S. Sawhney, Rakesh Kumar, "Object Tracking with Bayesian Estimation of Dynamic Layer Representations", IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol.24 No.1, 2002, pp.75-89 https://doi.org/10.1109/34.982885
  6. Xavier Clady, Francois Collange, Frederic Jurie, Philippe Martinet, "Object Tracking with a Pan-Tilt-Zoom Camera : application to car driving assistance", Proceedings of the 2001 IEEE International Conference on Robotics & Automation in Seoul, 2001, pp.1653-1658
  7. D.Bruce, Lucas and Takeo Kanade, "An Iterative Image Registration Technique with an Application to Stereo Vision," In Proc. Darpa image Understanding Work-shop, pp. 121-130, 1981.
  8. D. Comaniciu and P. Meer, "Real-Time Tracking of Non-Rigid Objects Using Mean Shift", proc. IEEE Conf. Computer Vision and Pattern Recognition, Vol.20, pp.142-149, june 2000.
  9. D. Comaniciu and P. Meer, "Mean Shift : A Robust Approach Toward Feature Space Analysis," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.24, No.5, pp.603-619, May 2002. https://doi.org/10.1109/34.1000236
  10. D. Comaniciu and V. Ramesh , P. Meer, "Kernel-Based Tracking", IEEE trans. Pattern Analysis and Machine Intelligence, Vol.25, No. 5, pp.564-577 May 2003. https://doi.org/10.1109/TPAMI.2003.1195991
  11. S. Lee, J. Kang, J. Shin, and J. Paik, "Hierarchical active shape model with motion prediction for real-tine tracking of non-rigid object," IET Computer Vision, Vol.1, No.1, pp. 17-24, March 2007. https://doi.org/10.1049/iet-cvi:20045243
  12. P. Azzari, L. Stefano, and A. Bevilacqua, "An effective real-time mosaicing algorithm apt to detect motion through background subtraction usinf a PTZ comera," IEEE Conf. Advanced Video and Signal-Based Surveillance, pp. 511-516, 2005.
  13. H. Liu, N. Doug, H. Zha, "Omni-directional vision based human motion detection for autonomous mobile Robots," Proc. IEEE Conf, Systems, Man and Cybernetics, Vol.3, pp. 2236-2241, 2005.
  14. Yi Yao, Besma Abidi, and Mongi Abidi, "Fusion of Omni-directional and PTZ camera for accurate cooperative tracking," Proc. IEEE, International Conference on Video and Signal Based Surveillance, pp. 46, 2006.