DOI QR코드

DOI QR Code

Polyethersulfone (PES) ultrafiltration (UF) membranes loaded with silver nitrate for bacteria removal

  • Basri, H. (Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia) ;
  • Ismail, A.F. (Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia) ;
  • Aziz, M. (Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia)
  • 투고 : 2009.10.15
  • 심사 : 2010.07.19
  • 발행 : 2011.01.25

초록

PES UF membranes containing silver were prepared to impart antibacterial properties for waste water treatment. Asymmetric membranes for antibacterial application were prepared from polyethersulfone (PES) and silver nitrate ($AgNO_3$) (PES/$AgNO_3$=15/2 by weight) solution in N-Methyl-2-pyrrolidone (NMP) via simple wet phase inversion technique. These membranes were characterized by polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) of different molecular weights (1000 ppm in water) at room temperature and on operating pressure of 5 bars. It was observed that the water flux of PES-$AgNO_3$ membrane is slightly lower than virgin PES but still increased linearly with the increment of pressure applied. The morphology of the resulting membranes was examined using Field-Emission Scanning Electron Microscope (FESEM) coupled with Energy Dispersive Spectroscopy (EDS). Elemental analysis using EDS proved that silver is successfully loaded on the membrane surfaces. Due to the success of loading silver on membrane surfaces, antibacterial activities were evaluated via agar diffusion method against Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus) culture. By incorporating 2 wt% of silver nitrate, PES-$AgNO_3$ showed significant inhibition ring on both E.coli and S.aureus. Filtration of E.coli solution (OD 0.31) showed satisfactory rejection data with ~100% inhibition growth after 24 hours incubation at $37^{\circ}C$. Resultant membranes also exhibit better tensile strength (compared to virgin PES) up to 71% may be due to the suggested interactions. The residual silver during fabrication was measured using ICP-MS and result showed that the residual silver content of PES-$AgNO_3$ membrane was only ~1% of the original silver added in the polymer solution. These studies have shown that PES-$AgNO_3$ UF membranes are potential in improving the filtration in water treatment.

키워드

참고문헌

  1. Arthaneeswaran, G., Thanikaivelan, P., Srinivasn, K., Mohan, D. and Rajendran, M. (2004), "Synthesis, characterization and thermal studies on cellulose acetate membranes with additive", Eur. Polym. J., 40, 2153-2159. https://doi.org/10.1016/j.eurpolymj.2004.04.024
  2. Atiyeh, S.B., Costagliola, M., Hayek, S.N. and Dibo, S.A. (2007), "Effect of silver on burn wound infection control and healing; review of the literature", Burns, 33, 139-148. https://doi.org/10.1016/j.burns.2006.06.010
  3. Baker, R.W.(2004) Membrane technology and application., 2nd Edition, John Wiley & Sons.
  4. Barth, C., Goncalves, M.C., Pires, A.T.N., Roeder, J. and Wolf, B.A. (2000), "Asymmetric polysulfone and polyethersulfone membranes: effects of themodynamic conditions during formation on their performance", J. Membrane Sci., 169(2), 287-299. https://doi.org/10.1016/S0376-7388(99)00344-0
  5. Carreon, J., Saucedo, I., Navarro, R., Maldonado, M. and Guibal, E. (2010), "Mercury recovery from aqueous solutions by polymer-enhanced ultrafiltration using a sulfate derivative of chitosan", Membrane Water Treatment, 1(4).
  6. Chatterjee, U., Jewrajka, S.K. and Guha, S. (2008), "Dispersion of functionalized silver nanoparticles in polymer matrices : stability, characterization and physical properties", Polym. Composites, 30(6), 827-834.
  7. Choi, O., Deng, K.K., Kim, N.J., Ross, Jr. L. and Surampalli, R.Y. (2008), "The inhibitory effects of silver nanoparticles, silver ions and silver chloride colloids on microbial growth", Water Res., 42(12), 3066-3074. https://doi.org/10.1016/j.watres.2008.02.021
  8. Chou, W.L., Yu, D.G. and Yang, M.C. (2005), "The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment", Polym. Advan. Technol., 16, 600-607. https://doi.org/10.1002/pat.630
  9. Deng, B., Li, J., Hou, Z., Yao, S., Shi, L., Liang, G., and Sheng, K. (2008), "Microfiltration membranes prepared from polyethersulfone powder grafted with acrylic acid by simultaneous irradiation and their pH dependence", Radiat. Phys. Chem., 77, 898-906. https://doi.org/10.1016/j.radphyschem.2008.02.008
  10. Han, L., Wang, R., Yuan, D., Wu, B., Lou, B. and Hong, M. (2005), "Hierarchical assembly of a novelluminescent silver coordination framework with 4-(4-pyridylthiomethyl) benzoic acid", J. Mol. Struct.,737, 55-59. https://doi.org/10.1016/j.molstruc.2004.10.037
  11. Idris, A., Zain, N.M. and Noordin, M.Y. (2007), "Synthesis, characterization and performance of asymmetric polyethersulfone (PES) ultrafiltration membranes with polyethylene glycol of different molecular weights as additives", Desalination, 207, 324-339. https://doi.org/10.1016/j.desal.2006.08.008
  12. Ismail, A.F. and Hassan, A.R. (2007), "Effect of additive contents on the per formances and structural properties of asymmetric polyethersulfone (PES) nanofiltration membranes", Sep. Purif. Technol., 55, 98-109. https://doi.org/10.1016/j.seppur.2006.11.002
  13. Johnson, J., (2003), A Novel Polyethersulphone microporous membrane, Feature Article Membrane Technology, 5-10.
  14. Jung, B., Yoon, J, K., Kim, B. and Rhee, H.W. (2004), "Effect of molecular weight of polymeric additives on formation, permeation properties and hypochlorite treatment of asymmetric polyacrylonitrile membranes", J. Membrane Sci., 243, 45-57. https://doi.org/10.1016/j.memsci.2004.06.011
  15. Khayet, M., Feng, C.Y. and Matsuura, T. (2003), "Morphological study of fluorinated asymmetric polyetherimide ultrafiltration membranes by surface modifying macromolecules", J. Membrane Sci., 213, 159-180. https://doi.org/10.1016/S0376-7388(02)00523-9
  16. Khayet, M., Feng, C.Y., Khulbe, K.C. and Matsuura, T. (2002), "Study on the effect of a non-solvent additive on the morphology and performance of ultrafiltration hollow-fiber membrane", Desalination, 148, 321-327. https://doi.org/10.1016/S0011-9164(02)00724-5
  17. Kusworo, T.D., Ismail, A.F., Mustafa, A. and Matsuura, T. (2008), "Dependence of membrane morphology and performance on preparation conditions : The shear rate effect in membrane casting", Sep. Purif. Technol., 61, 249-257. https://doi.org/10.1016/j.seppur.2007.10.017
  18. Lin, H.W., Hwu, W.H. and Ger, M.D. (2008), "The dispersion of silver nanoparticles with physical dispersal procedures", J. Mater. Process. Technol., 206(1-3), 56-61. https://doi.org/10.1016/j.jmatprotec.2007.12.025
  19. Liu, S.X., Kim, J.T. and Kim, S. (2008), "Effect of polymer surface modification on polymer-protein interaction via hydrophilic polymer grafting", J. Food Sci. 73(3), 143-150. https://doi.org/10.1111/j.1750-3841.2008.00699.x
  20. Ma, Y., Zhou, T. and Zhao, C. (2008), "Preparation of chitosan-nylon-6 blended membranes containing silver ions as antibacterial materials", Carbohyd. Res., 343(2), 230-237. https://doi.org/10.1016/j.carres.2007.11.006
  21. Madaeni, S.S. (1999), "The application of membrane technology for water disinfection, Review paper", Water Res., 33, 301-308 https://doi.org/10.1016/S0043-1354(98)00212-7
  22. Madigan, M.T., Martinko, J.M. and Parker, J. (2000), Brock biology of microorganisms-Chapter 3 : Overview of cell structure and the significance of smallness, 9th edition, Prentice-Hall, Upper Saddle River, NJ, 58-59.
  23. Malaisamy, R., Mohan, D.R. and Rajendran, M. (2002), "Polyurethane and sulfonated polysulfone blend ultrafiltration membranes (I. Preparation and Characterization Studies)", J. Colloid Interf. Sci., 254, 129-140.
  24. Marchese, J., Ponce, M., Ochoa, N.A., Prádanos, P., Palacio, L. and Hernández, A. (2003), "Fouling behaviour of polyethersulfone UF membranes made with different PVP", J. Membrane Sci., 211, 1-11. https://doi.org/10.1016/S0376-7388(02)00260-0
  25. Mimi Sakinah, A.M., Ismail, A.F., Rosli Md Illias and Osman Hassan (2007), "Fouling characteristics and autopsy of a PES ultrafiltration membrane in cyclodextrins separation", Desalination, 207, 227-242. https://doi.org/10.1016/j.desal.2006.08.007
  26. Mohd Norddin, M.N.A., Ismail, A.F., Rana, D., Matsuura, T., Mustafa, A. and Tabe-Mohammadi, A. (2008), "Characterization and performance of proton exchange membranes for direct methanol fuel cell: Blending of sulfonated poly(ether ether ketone) with charged surface modifying macromolecule", J. Membrane Sci., 323, 404-413. https://doi.org/10.1016/j.memsci.2008.06.051
  27. Mulder, M. (1991), Basic principles of membrane technology, Kluwer Academic Publisher, The Netherlands.
  28. Nandi, B.K., Das, B., Uppaluri, R. and Purkait, M.K. (2010), "Preparation and characterization of inexpensive submicron range inorganic microfiltration membranes", Membrane Water Treatment, 1(2), 121-137. https://doi.org/10.12989/mwt.2010.1.2.121
  29. Rahimpour, A., Madaeni, S.S. and Mehdipour Ataei, S. (2008), "Synthesis of a novel poly(amide-imide)(PAI) and preparation and characterization of PAI blended polyethersulfone (PES) membranes", J. Membrane Sci., 311, 349-359. https://doi.org/10.1016/j.memsci.2007.12.038
  30. Slistan Grijalva, A., Herrera Urbina, R., Rivas Silva, J.F., Avalos Borja, M., Castillon Barraza, F.F. and Posada- Amarillas, A. (2008), "Synthesis of silver nanoparticles in a polyvinylpyrrolidone (PVP) paste and their optical properties in a film and in ethylene glycol", Mater. Res. Bull., 43, 90-96. https://doi.org/10.1016/j.materresbull.2007.02.013
  31. Su, C., Kuraoka, K. and Yazawa, T. (2002), "Increasing the stability of silver(I) ions in inorganic-organic hybrid membranes for $C_{2}H_{4}/C_{2}H_{6}$ separation by using weakly self-coordinating anions of the silver salts", J. Mater. Sci. Lett., 21, 525-527. https://doi.org/10.1023/A:1015488317465
  32. Suk, D.C., Chowdhury, G. and Matsuura, T. (2002), "Study in the kinetics of surface migration of surface modifying macromolecules in membrane preparation", Macromolecules, 35, 3017-3021. https://doi.org/10.1021/ma011205a
  33. Wang, Y., Yang, Q., Shan, G., Wang, C., Du, J., Wang, S., Li, Y., Chen, X., Jing, X. and Wei, Y. (2005), "Preparation of silver nanoparticles dispersed in polyacrylonitrile nanofiber film spun by electrospinning", Mat. Lett., 59, 3046-3049. https://doi.org/10.1016/j.matlet.2005.05.016
  34. Yao, C., Li, X., Neoh, K. G., Shib, Z. and Kang, E.T. (2008), "Surface modification and antibacterial activity of electrospun polyurethane fibrous membranes with quaternary ammonium moieties", J. Membrane Sci., 320, 259-267. https://doi.org/10.1016/j.memsci.2008.04.012
  35. Yiu, C.K.Y., King, N.M., Pashley, D.H., Suh, B.I., Carvalho, R.M., Carrilho, M.R.O. and Tay, F.R. (2004), "Effect of resin hydrophilicity and water storage on resin strength", Biomaterials, 25, 5789-5796. https://doi.org/10.1016/j.biomaterials.2004.01.026
  36. Yu, D.G., Teng, M.Y., Chou, W.L. and Yang, M.C. (2003), "Characterization and inhibitory effect of antibacterial PAN-based hollow fiber loaded with silver nitrate", J. Membrane Sci., 225, 115-123. https://doi.org/10.1016/j.memsci.2003.08.010
  37. Zodrow, K., Brunet, L., Mahendra, S., Li, D., Zhang, A., Li, Q. and Alvarez, P.J.J. (2009), "Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal", Water Res., 43, 715-723. https://doi.org/10.1016/j.watres.2008.11.014

피인용 문헌

  1. Effect of metal and metal oxide nanoparticle impregnation route on structure and liquid filtration performance of polymeric nanocomposite membranes: a comprehensive review vol.51, pp.16-18, 2013, https://doi.org/10.1080/19443994.2012.749055
  2. Permeability of pH-sensitive membranes grafted by Fenton-type reaction: An experimental and modeling study vol.6, pp.5, 2015, https://doi.org/10.12989/mwt.2015.6.5.411
  3. Effluents from copper industry: Improvised techniques vol.6, pp.2, 2015, https://doi.org/10.12989/mwt.2015.6.2.103
  4. Modification of polypropylene membranes by ion implantation vol.37, pp.3, 2016, https://doi.org/10.1515/cpe-2016-0027
  5. Study of the Mechanical Properties of Nano Silver Nitrate Filled Polypropylene Composites vol.379, pp.1, 2018, https://doi.org/10.1002/masy.201700026
  6. Preparation, characterization and comparison of antibacterial property of polyethersulfone composite membrane containing zerovalent iron or magnetite nanoparticles vol.8, pp.1, 2017, https://doi.org/10.12989/mwt.2017.8.1.051
  7. Anti-biofilm AgNP-polyaniline-polysulfone composite membrane activated by low intensity direct/alternating current vol.4, pp.10, 2011, https://doi.org/10.1039/c8ew00259b
  8. Improved Performance of Polysulfone Ultrafiltration Membrane Using TCPP by Post-Modification Method vol.10, pp.4, 2020, https://doi.org/10.3390/membranes10040066