DOI QR코드

DOI QR Code

The Effects of Pre-Annealing on Electrochemical Preparation for Nanoporous Tungsten Oxide Films

전기화학적 제조를 통한 나노다공성 텅스텐 산화물 성장의 전열처리 영향

  • Kim, Sun-Mi (Department of Chemical Engineering, Inha University) ;
  • Kim, Kyung-Min (Department of Chemical Engineering, Inha University) ;
  • Choi, Jin-Sub (Department of Chemical Engineering, Inha University)
  • Received : 2011.07.18
  • Accepted : 2011.07.29
  • Published : 2011.08.31

Abstract

We describe that the surface and thickness of nanoporous $WO_3$ fabricated by both light-induced and light-absent anodization are affected by pre-annealing process from $200^{\circ}C$ to $600^{\circ}C$. As a result, the nanoporous $WO_3$ with a thickness of $1.83{\mu}m$ can be achieved by anodization for 6 hours after pre-annealing at $400^{\circ}C$ without illumination of light. Moreover, the thickness of nanoporous $WO_3$ fabricated by pre-annealing is thicker than that of $WO_3$ prepared by non-annealing process. However, the light illumination during anodization leads to convert the crystalline structure obtained by pre-annealing, which interfere the growth of nanoporous $WO_3$. In this paper, we discuss about the growth mechanism of these different nanoporous $WO_3$ films.

본 연구에서는 텅스텐 금속박막을 $200^{\circ}C$에서부터 $600^{\circ}C$의 온도 구간에서 전열처리 (Preannealing) 한 후에, 빛의 조사 유무에 따라 양극산화를 진행하여 생성된 텅스텐 산화물의 표면과 두께에 대해 관찰하였다. 결과적으로 6시간의 동일한 반응시간 동안, $400^{\circ}C$에서 전열처리 한 후에 빛의 조사 없이 양극산화 하였을 때, $1.83{\mu}m$ 두께의 텅스텐 산화물을 제조할 수 있는 것을 발견하였다. 더욱이 전열처리를 하게 되면 더 두꺼운 산화물을 제조 할 수 있으나, 빛을 조사하게 되면 전열처리에 의해 생성된 산화물을 결정화시켜 오히려 산화물 성장에 방해가 되었다. 이러한 차이점에 대해 결정구조 및 메커니즘에 근거하여 설명하였다.

Keywords

References

  1. E. Khoo, P. S. Lee and J. Ma, 'Electrophoretic deposition (EPD) of $WO_3$ nanorods for electrochromic application' J. Eur. Ceram. Soc., 30, 1139, (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.05.014
  2. Y. C. Nah, A. Ghicov, D. Kim and P. Schmuki, 'Enhanced electrochromic properties of self-organized nanoporous $WO_3$' Electrochem. Commun., 10, 1777, (2008). https://doi.org/10.1016/j.elecom.2008.09.017
  3. G. A. Niklasson, C. G. Granqvist, 'Electrochromics for smart windows: Thin films of tungsten oxide and nickel oxide, and devices based on these' J. Mater. Chem., 17, 127, (2007). https://doi.org/10.1039/b612174h
  4. W. Li and Z. Fu, 'Nanostructured $WO_3$ thin film as a new anode material for lithium-ion batteries' Appl. Surf. Sci., 256, 2447, (2010). https://doi.org/10.1016/j.apsusc.2009.10.085
  5. Y. Nah, I. Paramasivam, R. Hahn, N. K. Shrestha and P. Schmuki, 'Nitrogen doping of nanoporous $WO_3$ layers by $NH_3$ treatment for increased visible light photoresponse' Nanotechnology, 21, 105704 (2010). https://doi.org/10.1088/0957-4484/21/10/105704
  6. W. Li, J. Li, X. Wang, S. Luo, J. Xiao and Q. Chen, 'Visible light photoelectrochemical responsiveness of self-organized nanoporous $WO_3$ films' Electrochim. Acta, 56, 620, (2010). https://doi.org/10.1016/j.electacta.2010.06.025
  7. N. de Tacconi, C. Chenthamarakshan, G. Yogeeswaran, A. Watcharenwong, R. de Zoysa, N. Basit and K. Rajeshwar, 'Nanoporous $TiO_2$ and $WO_3$ films by anodization of titanium and tungsten substrates : Influence of process variables on morphology and photoelectrochemical response' J. Phys. Chem. B, 110, 25347, (2006). https://doi.org/10.1021/jp064527v
  8. J. H. Park, O. O. Park and S. Kim, 'Photoelectrochemical water splitting at titanium dioxide nanotubes coated with tungsten trioxide' Appl. Phys. Lett., 89, 163106, (2006). https://doi.org/10.1063/1.2357878
  9. B. Cole, B. Marsen, E. Miller, Y. Yan, B. To, K. Jones and M. Al-Jassim, 'Evaluation of nitrogen doping of tungsten oxide for photoelectrochemical water splitting' J. Phys. Chem. C, 112, 5213, (2008). https://doi.org/10.1021/jp077624c
  10. E. L. Miller, B. Marsen, B. Cole and M. Lum, 'Lowtemperature reactively sputtered tungsten oxide films for solar-powered water splitting applications' Electrochem. Solid-State Lett., 9, G248, (2006). https://doi.org/10.1149/1.2201994
  11. D. Gogova, K. Gesheva, A. Szekeres and M. Sendova-Vassileva, 'Structural and optical properties of CVD thin tungsten oxide films' Phys. Status Solidi (a), 176, 969, (1999). https://doi.org/10.1002/(SICI)1521-396X(199912)176:2<969::AID-PSSA969>3.0.CO;2-9
  12. C. Cantalini, W. Wlodarski, Y. Li, M. Passacantando, S. Santucci, E. Comini, G. Faglia and G. Sberveglieri, 'Investigation on the $O_3$ sensitivity properties of $WO_3$ thin films prepared by sol-sel, thermal evaporation and RF sputtering techniques' Sens. Actuators B : Chem., 64, 182, (2000). https://doi.org/10.1016/S0925-4005(99)00504-3
  13. C. Cantalini, H. T. Sun, M. Faccio, M. Pelino, S. Santucci, L. Lozzi and M. Passacantando, '$NO_3$ sensitivity of $WO_3$ thin film obrained by high vacuum thermal evaporation' Sens. Actuators B : Chem., 31, 81, (1996). https://doi.org/10.1016/0925-4005(96)80020-7
  14. E. Ozkan and F. Tepehan, 'Optical and structural characteristics of sol-gel-deposited tungsten oxide and vanadium-doped tungsten oxide films' Sol. Energy Mater. Sol. Cells, 68, 265, (2001). https://doi.org/10.1016/S0927-0248(00)00361-5
  15. M. Niederberger, 'Nonaueous sol-gel routes to metal oxide nanoparticles' Acc. Chem. Res., 40, 793, (2007). https://doi.org/10.1021/ar600035e
  16. H. Tsuchiya, J. M. Macak, I. Sieber, L. Taveira, A. Ghicov, K. Sirotna and P. Schmuki, 'Self-organized porous $WO_3$ formed in NaF electrolytes' Electrochem. Commun., 7, 295, (2005) https://doi.org/10.1016/j.elecom.2005.01.003
  17. K. Kalantar-zadeh, A. Z. Sadek, H. Zheng, V. Bansal, S. K. Bhargava, W. Wlodarski, J. Zhu, L. Yu and Z. Hu, 'Nanostructured $WO_3$ films using high temperature anodization' Sens. Actuators B : Chem., 142, 230, (2009). https://doi.org/10.1016/j.snb.2009.08.014
  18. A. Watcharenwong, W. Chanmanee, N. R. de Tacconi, C. R. Chenthamarakshan, P. Kajitvichyanukul and K. Rajeshwar, 'Anodic growth of nanoporous $WO_3$ films : Morphology, photoelectrochemical response and photocatalytic activity for methylene blue and hexavalent chrome conversion' J. Electroanal. Chem., 612, 112, (2008). https://doi.org/10.1016/j.jelechem.2007.09.030
  19. M. Yang, N. K. Shrestha and P. Schmuki, 'Thick porous thungsten trioxide films by anodization of tungsten in fluoride containing phosphoric acid electrolyte' Electrochem. Commun., 11, 1908, (2009). https://doi.org/10.1016/j.elecom.2009.08.014
  20. R. Hahn, J. Macak and P. Schmuki, 'Rapid anodic growth of $TiO_2$ and $WO_3$ nanotubes in fluoride free electrolytes' Electrochem. Commun., 9, 947, (2007). https://doi.org/10.1016/j.elecom.2006.11.037
  21. N. Mukherjee, M. Paulose, O. K. Varghese, G. Mor and C. Grimes, 'Fabrication of nanoporous tungsten oxide by gavanostatic anodization' J. Mater. Res., 18, 2296, (2003). https://doi.org/10.1557/JMR.2003.0321
  22. C. Hu and C. Wang, 'Improving the utilization of ruthenium oxide within thick carbon-ruthenium oxide composites by annealing and anodizing for electrochemical supercapacitors' Electrochem. Commun., 4, 554, (2002). https://doi.org/10.1016/S1388-2481(02)00371-5
  23. J.-I. Yu, J.-H. Kim, J.-H. Lim, J.-Y. Yu, and K.-H. Kim, 'The study of magnesium alloy by annealing treatment' J. Korean Vacuum. Soc., 16, 23, (2007). https://doi.org/10.5757/JKVS.2007.16.1.023
  24. J. Choi, J. Lim, J. Lee and K. Kim, 'Porous niobium oxide films prepared by anodization-annealing-anodization' Nanotechnology, 18, 055603, (2007). https://doi.org/10.1088/0957-4484/18/5/055603
  25. S. Kim and J. Choi, 'Light-induced anodization for the preparation of tungsten oxide films and its water splitting application' J. Mater. Chem., submitted.
  26. W. Lee, D. Kim, K. Lee, P. Roy and P. Schmuki, 'Direct anodic growth of thick $WO_3$ mesosponge layers and characterization of their photoelectrochemical response' Electrochim. Acta, 56, 828, (2010). https://doi.org/10.1016/j.electacta.2010.09.087
  27. B. Scherrer, A. Rossi, J. Martynczuk, M. D. Rossell, A. Bieberle-Htter, J. L. M. Rupp, R. Erni, and L. J. Gauckler, 'Impact of substrate material and annealing conditions on the microstructure and chemistry of yttria-stabilized-zirconia thin films' J. Power Sources, 196, 7372, (2011). https://doi.org/10.1016/j.jpowsour.2011.03.077