DOI QR코드

DOI QR Code

NF-Y binds to both G1- and G2-specific cyclin promoters; a possible role in linking CDK2/Cyclin A to CDK1/Cyclin B

  • Chae, Hee-Don (Department of Microbiology, Dankook University College of Medicine) ;
  • Kim, Jung-Bin (Department of Microbiology, Dankook University College of Medicine) ;
  • Shin, Deug-Y. (Department of Microbiology, Dankook University College of Medicine)
  • Received : 2011.05.13
  • Accepted : 2011.05.23
  • Published : 2011.08.31

Abstract

We previously reported that CDK2/Cyclin A can phosphorylate and activate the transcription factor NF-Y. In this study, we investigated a potential regulatory role for NF-Y in the transcription of Cyclin A and other cell cycle regulatory genes. Gel-shift assays demonstrate that NF-Y binds to CCAAT sequences in the Cyclin A promoter, as well as to those in the promoters of cell cycle G2 regulators such as CDC2, Cyclin B and CDC25C. Furthermore, expression of Cyclin A increases NF-Y's affinity for CCAAT sequences in the CDC2 promoter; however, Cyclin A's induction of CDC2 transcription is antagonized by p21, an inhibitor of CDK2/Cyclin A. These results suggest a model wherein NF-Y binds to and activates transcription from the Cyclin A promoter, increasing cellular levels of Cyclin A/CDK2 and potentiating NF-Y's capacity for transcriptional transactivation, and imply a positive feedback loop between NF-Y and Cyclin A/CDK2. Our findings are additionally indicative of a role for Cyclin A in activating Cyclin B/CDK1 through promoting NF-Y dependent transcription of Cyclin B and CDC2; NF-Y mediated crosstalk may therefore help to orchestrate cell-cycle progression.

Keywords

References

  1. Morgan, D. O. (1995) Principles of CDK regulation. Nature 374, 131-134. https://doi.org/10.1038/374131a0
  2. Nasmyth, K. (1996) Viewpoint: putting the cell cycle in order. Science 274, 1643-1645. https://doi.org/10.1126/science.274.5293.1643
  3. Weinberg, R. A. (1995) The retinoblastoma protein and cell cycle control. Cell 81, 323-330. https://doi.org/10.1016/0092-8674(95)90385-2
  4. Sherr, C. J. (1996) Cancer cell cycles. Science 274, 1672-1677. https://doi.org/10.1126/science.274.5293.1672
  5. Ohtani, K., DeGregori, J. and Nevins, J. R. (1995) Regulation of the cyclin E gene by transcription factor E2F1. Proc. Natl. Acad. Sci. U.S.A. 92, 12146-12150. https://doi.org/10.1073/pnas.92.26.12146
  6. Duronio, R. J., Brook, A., Dyson, N. and O'Farrell, P. H. (1996) E2F-induced S phase requires cyclin E. Genes Dev. 10, 2505-2513. https://doi.org/10.1101/gad.10.19.2505
  7. Park, M., Chae, H. D., Yun, J., Jung, M., Kim, Y. S., Kim, S. H., Han, M. H. and Shin, D. Y. (2000) Constitutive activation of cyclin B1-associated cdc2 kinase overrides p53-mediated G2-M arrest. Cancer Res. 60, 542-545.
  8. Agarwal, M. L., Agarwal, A., Taylor, W. R. and Stark, G. R. (1995) p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 92, 8493-8497. https://doi.org/10.1073/pnas.92.18.8493
  9. Bunz, F., Dutriaux, A., Lengauer, C., Waldman, T., Zhou, S., Brown, J. P., Sedivy, J. M., Kinzler, K. W. and Vogelstein, B. (1998) Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282, 1497-1501. https://doi.org/10.1126/science.282.5393.1497
  10. Guadagno, T. M. and Newport, J. W. (1996) Cdk2 kinase is required for entry into mitosis as a positive regulator of Cdc2-cyclin B kinase activity. Cell 84, 73-82. https://doi.org/10.1016/S0092-8674(00)80994-0
  11. Dorn, A., Bollekens, J., Staub, A., Benoist, C. and Mathis, D. (1987) A multiplicity of CCAAT box-binding proteins. Cell 50, 863-872. https://doi.org/10.1016/0092-8674(87)90513-7
  12. Sinha, S., Kim, I. S., Sohn, K. Y., de Crombrugghe, B. and Maity, S. N. (1996) Three classes of mutations in the A subunit of the CCAAT-binding factor CBF delineate functional domains involved in the three-step assembly of the CBF-DNA complex. Mol. Cell. Biol. 16, 328-337. https://doi.org/10.1128/MCB.16.1.328
  13. Currie, R. A. (1998) Biochemical characterization of the NF-Y transcription factor complex during B lymphocyte development. J. Biol. Chem. 273, 18220-18229. https://doi.org/10.1074/jbc.273.29.18220
  14. Jung, M. S., Yun, J., Chae, H. D., Kim, J. M., Kim, S. C., Choi, T. S. and Shin, D. Y. (2001) p53 and its homologues, p63 and p73, induce a replicative senescence through inactivation of NF-Y transcription factor. Oncogene 20, 5818-5825. https://doi.org/10.1038/sj.onc.1204748
  15. Pang, J. H. and Chen, K. Y. (1993) A specific CCAAT-binding protein, CBP/tk, may be involved in the regulation of thymidine kinase gene expression in human IMR-90 diploid fibroblasts during senescence. J. Biol. Chem. 268, 2909-2916.
  16. Marziali, G., Perrotti, E., Ilari, R., Testa, U., Coccia, E. M. and Battistini, A. (1997) Transcriptional regulation of the ferritin heavy-chain gene: the activity of the CCAAT binding factor NF-Y is modulated in heme-treated Friend leukemia cells and during monocyte-to-macrophage differentiation. Mol. Cell. Biol. 17, 1387-1395. https://doi.org/10.1128/MCB.17.3.1387
  17. Marziali, G., Perrotti, E., Ilari, R., Coccia, E. M., Mantovani, R., Testa, U. and Battistini, A. (1999) The activity of the CCAAT-box binding factor NF-Y is modulated through the regulated expression of its A subunit during monocyte to macrophage differentiation: regulation of tissue-specific genes through a ubiquitous transcription factor. Blood 93, 519-526.
  18. Farina, A., Manni, I., Fontemaggi, G., Tiainen, M., Cenciarelli, C., Bellorini, M., Mantovani, R., Sacchi, A. and Piaggio, G. (1999) Down-regulation of cyclin B1 gene transcription in terminally differentiated skeletal muscle cells is associated with loss of functional CCAAT-binding NF-Y complex. Oncogene 18, 2818-2827. https://doi.org/10.1038/sj.onc.1202472
  19. Chae, H. D., Yun, J., Bang, Y. J. and Shin, D. Y. (2004) Cdk2-dependent phosphorylation of the NF-Y transcription factor is essential for the expression of the cell cycle-regulatory genes and cell cycle G1/S and G2/M transitions. Oncogene 23, 4084-4088. https://doi.org/10.1038/sj.onc.1207482
  20. Yun, J., Chae, H. D., Choi, T. S., Kim, E. H., Bang, Y. J., Chung, J., Choi, K. S., Mantovani, R. and Shin, D. Y. (2003) Cdk2- dependent phosphorylation of the NF-Y transcription factor and its involvement in the p53-p21 signaling pathway. J. Biol. Chem. 278, 36966-36972. https://doi.org/10.1074/jbc.M305178200
  21. Yun, J., Chae, H. D., Choy, H. E., Chung, J., Yoo, H. S., Han, M. H. and Shin, D. Y. (1999) p53 negatively regulates cdc2 transcription via the CCAAT-binding NF-Y transcription factor. J. Biol. Chem. 274, 29677-29682. https://doi.org/10.1074/jbc.274.42.29677
  22. Shin, D. Y., Sugrue, M. M., Lee, S. W. and Aaronson, S. A. (1997) Wild-type p53 triggers a rapid senescence program in human tumor cells lacking functional p53. Proc. Natl. Acad. Sci. U.S.A. 94, 9648-9653. https://doi.org/10.1073/pnas.94.18.9648
  23. Chae, H. D., Choi, T. S., Kim, B. M., Jung, J. H., Bang, Y. J. and Shin, D. Y. (2005) Oocyte-based screening of cytokinesis inhibitors and identification of pectenotoxin-2 that induces Bim/Bax-mediated apoptosis in p53-deficient tumors. Oncogene 24, 4813-4819. https://doi.org/10.1038/sj.onc.1208640
  24. Graham, F. L. and van der Eb, A. J. (1973) Transformation of rat cells by DNA of human adenovirus 5. Virology 54, 536-539. https://doi.org/10.1016/0042-6822(73)90163-3
  25. Gorman, C. M., Moffat, L. F. and Howard, B. H. (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2, 1044-1051. https://doi.org/10.1128/MCB.2.9.1044
  26. Dignam, J. D., Lebovitz, R. M. and Roeder, R. G. (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475-1489. https://doi.org/10.1093/nar/11.5.1475

Cited by

  1. Effect of VTCN1 on progression and metastasis of ovarian carcinoma in vitro and vivo vol.73, 2015, https://doi.org/10.1016/j.biopha.2015.05.016
  2. NF-Y in cancer: Impact on cell transformation of a gene essential for proliferation vol.1860, pp.5, 2017, https://doi.org/10.1016/j.bbagrm.2016.12.005
  3. Single-cell, single-mRNA analysis of Ccnb1 promoter regulation vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-02240-y
  4. Activation of JNK Contributes to Evodiamine-Induced Apoptosis and G2/M Arrest in Human Colorectal Carcinoma Cells: A Structure-Activity Study of Evodiamine vol.9, pp.6, 2014, https://doi.org/10.1371/journal.pone.0099729
  5. Histone Deacetylase 3 Regulates Cyclin A Stability vol.288, pp.29, 2013, https://doi.org/10.1074/jbc.M113.458323
  6. Nitidine chloride inhibits hepatocellular carcinoma cell growth in vivo through the suppression of the JAK1/STAT3 signaling pathway vol.32, pp.1, 2013, https://doi.org/10.3892/ijmm.2013.1358
  7. NF-YB Regulates Spermatogonial Stem Cell Self-Renewal and Proliferation in the Planarian Schmidtea mediterranea vol.12, pp.6, 2016, https://doi.org/10.1371/journal.pgen.1006109
  8. Cyclin A regulates a cell-cycle-dependent expression of CKAP2 through phosphorylation of Sp1 vol.420, pp.4, 2012, https://doi.org/10.1016/j.bbrc.2012.03.081
  9. KHC-4 Anti-Cancer Effects on Human PC3 Prostate Cancer Cell Line vol.40, pp.05, 2012, https://doi.org/10.1142/S0192415X12500784
  10. Minute Virus of Mice Inhibits Transcription of the Cyclin B1 Gene during Infection vol.91, pp.14, 2017, https://doi.org/10.1128/JVI.00428-17