DOI QR코드

DOI QR Code

영 과잉 포아송 모형에 대한 베이지안 방법 연구

Bayesian Approaches to Zero Inflated Poisson Model

  • 투고 : 20110200
  • 심사 : 20110600
  • 발행 : 2011.08.31

초록

본 논문에서는 영 과잉 계수형 자료 분석을 위한 모형중의 하나인 영 과잉 포아송 모형의 베이지안 접근 방법에 대해서 연구한다. 구체적으로는 베이지안 영 과잉 포아송 모형의 적합을 위한 사후 표본을 추출하는데 있어서, 깁스 표집기(Gibbs sampler)를 이용하는 마르코프 연쇄 몬테칼로(MCMC) 방법과 역 베이즈공식(IBF)에 의한 표본추출 방법 두 가지를 고려한다. 이러한 두 가지 사후 표본 추출방법을 비교 설명하고, IBF를 통한 사후표본을 깁스 표집기 사후표본의 수렴성 여부를 확인하는 방식에 대해서도 소개한다. 이를 바탕으로 베이지안 영 과잉 포아송 모형을 Trajan이라는 사과 품종의 발아자료(Trajan data, Marin 등, 1993)에 적용하고 모수에 대한 사후추론을 실시하고 기존의 결과와 비교한다. 또한 주어진 자료에 대하여 영 과잉 포아송 모형이 적합한지에 대한 여부를 여러 가지 모형선택 기준을 통해서 살펴보고, 아울러 기존의 자료 분석 결과 (Rodrigues, 2003)를 보완하기 위하여 계층적 베이지안 모형과 같은 대안에 대해서도 논의해본다.

In this paper, we consider Bayesian approaches to zero inflated Poisson model, one of the popular models to analyze zero inflated count data. To generate posterior samples, we deal with a Markov Chain Monte Carlo method using a Gibbs sampler and an exact sampling method using an Inverse Bayes Formula(IBF). Posterior sampling algorithms using two methods are compared, and a convergence checking for a Gibbs sampler is discussed, in particular using posterior samples from IBF sampling. Based on these sampling methods, a real data analysis is performed for Trajan data (Marin et al., 1993) and our results are compared with existing Trajan data analysis. We also discuss model selection issues for Trajan data between the Poisson model and zero inflated Poisson model using various criteria. In addition, we complement the previous work by Rodrigues (2003) via further data analysis using a hierarchical Bayesian model.

키워드

참고문헌

  1. 이지호 (2011). <영과잉 포아송 분포에 대한 베이지안 방법론 고찰>, 고려대학교 통계학과 석사학위논문.
  2. Albert, J. (2007). Bayesian Computation with R, Use R! Springer, New York.
  3. Albert, J. H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response data, Journal of the American Statistical Association, 88, 669-679. https://doi.org/10.2307/2290350
  4. Angers, J. F. and Biswas, A. (2003). A Bayesian analysis of zero-in ated generalized Poisson model, Computational Statistics & Data Analysis, 42, 37-46. https://doi.org/10.1016/S0167-9473(02)00154-8
  5. Broek, J. van den (1995). A score test for zero in ation in a poisson distribution, Biometrics, 51, 738-743. https://doi.org/10.2307/2532959
  6. Brooks, S. P. and Gelman, A. (1998). General methods for monitoring convergence of iterative simulations, Journal of Computational and Graphical Statistics, 7, 434-455. https://doi.org/10.2307/1390675
  7. Christensen, R., Johnson, W., Branscum, A. and Hanson, T. E. (2011). Bayesian ideas and data analysis, Texts in Statistical Science Series, CRC Press, Boca Raton, FL. An introduction for scientists and statisticians.
  8. Diebolt, J. and Robert, C. P. (1994). Estimation of nite mixture distributions through Bayesian sampling, Journal of the Royal Statistical Society: Series B, 56, 363-375.
  9. Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences, Statistical Science, 7, 457-472. https://doi.org/10.1214/ss/1177011136
  10. George, E. I., Makov, U. E. and Smith, A. F. M. (1993). Conjugate likelihood distributions, Scandinavian Journal of Statistics, 20, 147-156.
  11. George, E. I., Makov, U. E. and Smith, A. F. M. (1993). Conjugate likelihood distributions, Scandinavian Journal of Statistics, 20, 147-156.
  12. Ghosh, S. K., Mukhopadhyay, P. and Lu, J. C. (2006). Bayesian analysis of zero-in ated regression models, Journal of Statistical Planning and Inference, 136, 1360-1375. https://doi.org/10.1016/j.jspi.2004.10.008
  13. Gomez-Rubio, V. and Lopez-Quilez, A. (2010). Statistical methods for the geographical analysis of rare diseases, Advances in Experimental Medicine and Biology, 686, 151-171. https://doi.org/10.1007/978-90-481-9485-8_10
  14. Heilbron, D. C., Jewell, N. P., Hauck, W. W., Fusaro, R. E., Kalb eisch, J. D., Neuhaus, J. M. and Ashby, M. A. (1989). An annotated bibliography of quantitative methodology relating to the AIDS epidemic, Statistical Science, 4, 264-281. https://doi.org/10.1214/ss/1177012492
  15. Johnson, N. L., Kemp, A. W. and Kotz, S. (2005). Univariate Discrete Distributions, third edition, Wiley Series in Probability and Statistics, John Wiley & Sons, New Jersey.
  16. Johnson, V. E. (2004). A Bayesian ${\chi}^2$ test for goodness-of-fit, Annals of Statistics, 32, 2361-2384. https://doi.org/10.1214/009053604000000616
  17. Lambert, D. (1992). Zero-in ated poisson regression, with an application to defects in manufacturing, Technometrics, 34, 1-14. https://doi.org/10.2307/1269547
  18. Marin, J., Jones, O. and Hadlow, W. (1993). Micropropagation of columnar apple trees, Journal of Horticultural Science, 68, 289-297. https://doi.org/10.1080/00221589.1993.11516354
  19. Ntzoufras, I. (2009). Bayesian Modeling using WinBUGS, Wiley, Hoboken, New Jersey.
  20. Raftery, A. E. and Lewis, S. M. (1992). [Practical markov chain monte carlo]: Comment: One long run with diagnostics: Implementation strategies for markov chain monte carlo, Statistical Science, 7, 493-497. https://doi.org/10.1214/ss/1177011143
  21. Ridout, M., Hinde, J. and Demetrio, C. G. B. (2001). A score test for testing a zero-in ated Poisson regression model against zero-in ated negative binomial alternatives, Biometrics, 57, 219-223. https://doi.org/10.1111/j.0006-341X.2001.00219.x
  22. Rodrigues, J. (2003). Bayesian analysis of zero-in ated distributions, Communications in Statistics - Theory and Methods, 32, 281-289. https://doi.org/10.1081/STA-120018186
  23. Rubin, D. B. and Gelman, A. (1992). Inference from iterative simulation using multiple sequences, Statistical Science, 7, 457-472. https://doi.org/10.1214/ss/1177011136
  24. Spiegelhalter, D., Thomas, A., Best, N. and Lunn, K. (2003). WinBUGS User Manual, MRC Biostatistics Unit, Institute of Public Health and Department of Epidemiology and Public Health, Imperial College School of Medicine, UK.
  25. Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of model complexity and fit, Journal of the Royal Statistical Society - Series B (Statistical Methodology), 64, 583-639. https://doi.org/10.1111/1467-9868.00353
  26. Tan, M. T., Tian, G. L. and Ng, K. W. (2003). A noniterative sampling method for computing posteriors in the structure of EM-type algorithms, Statistica Sinica, 13, 625-639.
  27. Tan, M. T., Tian, G. L. and Ng, K. W. (2010). Bayesian Missing Data Problems: EM, Data Augmentation and Noniterative Computation, Chapman & HalI/CRC CRC Press, Florida.
  28. Tian, G. L., Tan, M. and Ng, K. W. (2007). An exact non-iterative sampling procedure for discrete missing data problems, Statistica Neerlandica, 61, 232-242. https://doi.org/10.1111/j.1467-9574.2007.00345.x
  29. Ugarte, M. D. and Militino, A. F. (2004). Testing for poisson zero in ation in disease mapping, Biometrical Journal, 46, 526-539. https://doi.org/10.1002/bimj.200310061
  30. Yip, P. (1988). Inference about the mean of a Poisson distribution in the presence of a nuisance parameter, Australian Journal of Statistics, 30, 299-306. https://doi.org/10.1111/j.1467-842X.1988.tb00624.x

피인용 문헌

  1. Bayesian Analysis of Dose-Effect Relationship of Cadmium for Benchmark Dose Evaluation vol.26, pp.3, 2013, https://doi.org/10.5351/KJAS.2013.26.3.453