References
- P. Alexandorff, Diskrete Raume, Mat. Sb. 2 (1937) 501-518.
- L. Boxer, A classical construction for the digital fundamental group, Jour. of Mathematical Imaging and Vision 10 (1999) 51-62. https://doi.org/10.1023/A:1008370600456
- S. E. Han, Non-product property of the digital fundamental group, Information Sciences 171(1-3) (2005) 73-91. https://doi.org/10.1016/j.ins.2004.03.018
- S.E. Han, On the simplicial complex stemmed from a digital graph, Honam Mathematical Journal 27(1) (2005) 115-129.
- S.E. Han, Continuities and homeomorphisms in computer topology and their applications, Journal of the Korean Mathematical Society 45(4)(2008) 923-952. https://doi.org/10.4134/JKMS.2008.45.4.923
-
S.E. Han, Equivalent (
$k_0,\,k_1$ )-covering and generalized digital lifting, Information Sciences 178(2)(2008) 550-561. https://doi.org/10.1016/j.ins.2007.02.004 - S.E. Han, Map preserving local properties of a digital image, Acta Applicandae Mathematicae, 104(2) (2008) 177-190. https://doi.org/10.1007/s10440-008-9250-2
-
S.E. Han, The k-homotopic thinning and a torus-like digital image in
$Z^n$ , Journal of Mathematical Imaging and Vision 31(1) (2008) 1-16. https://doi.org/10.1007/s10851-007-0061-2 -
S.E. Han, KD-(
$k_0,\,k_1$ )-homotopy equivalence and its applications, Journal of Korean Mathematical Society 47(5)(2010) 1031-1054. https://doi.org/10.4134/JKMS.2010.47.5.1031 - S.E. Han, N.D. Georgiou, On computer topological function space, Journal of the Korean Mathematical Society 46(4) (2009) 841-857. https://doi.org/10.4134/JKMS.2009.46.4.841
-
S.E. Han and B.G. Park, Digital graph (
$k_0,\,k_1$ )-isomorphism and its applications, http://atlas-conferences.com/c/a/k/b/36.htm(2003). - E. Khalimsky, R. Kopperman, P. R. Meyer, Computer graphics and connected topologies on finite ordered sets, Topology Applications, 36(1)(1990) 1-17. https://doi.org/10.1016/0166-8641(90)90031-V
- In-Soo Kim, S.E. Han, C.J. Yoo, The pasting property of digital continuity, Acta Applicandae Mathematicae 110 (2010) 399-408. https://doi.org/10.1007/s10440-008-9422-0
- T. Y. Kong, A. Rosenfeld, Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam, 1996.
- E. Melin, Extension of continuous functions in digital spaces with the Khalimsky topology, Topology and Its Applications 153(2005) 52-65. https://doi.org/10.1016/j.topol.2004.12.004
- A. Rosenfeld, Continuous functions on digital pictures, Pattern Recognition Letters, 4 (1986) 177-184. https://doi.org/10.1016/0167-8655(86)90017-6
Cited by
- COMPARISON OF CONTINUITIES IN DIGITAL TOPOLOGY vol.34, pp.3, 2012, https://doi.org/10.5831/HMJ.2012.34.3.451