DOI QR코드

DOI QR Code

Erythrolobus australicus sp. nov. (Porphyridiophyceae, Rhodophyta): a description based on several approaches

  • Received : 2011.03.03
  • Accepted : 2011.04.20
  • Published : 2011.06.15

Abstract

The unicellular marine red alga Erythrolobus australicus sp. nov. (Porphyridiophyceae) was isolated into laboratory culture from mangroves in Queensland and New South Wales, Australia. The single multi-lobed red to rose-red plastid has more than one pyrenoid and lacks a peripheral thylakoid. Arrays of small electron dense globules occur along the thylakoids. The nucleus is peripheral with a central to eccentric nucleolus. Each Golgi body is associated with a mitochondrion. The spherical cells are positively phototactic with slow gliding movement. The psaA + psbA phylogeny clearly showed that E. australicus is a distinct species, which is closely related to E. coxiae. The chemotaxonomically relevant and most abundant low molecular weight carbohydrate in E. australicus is floridoside with concentrations between 209 and 231 ${\mu}mol g^{-1}$ dry weight. Traces of digeneaside were also detected. These various approaches help to understand the taxonomic diversity of unicellular red algae.

Keywords

References

  1. Barrow, K. D., Karsten, U., King, R. J. & West, J. A. 1995. Floridoside in the genus Laurencia (Rhodomelaceae: Ceramiales): a chemosystematic study. Phycologia 34:279-283. https://doi.org/10.2216/i0031-8884-34-4-279.1
  2. Broadwater, S. T. & Scott, J. L. 1994. Ultrastructure of unicellular red algae. In Seckbach, J. (Ed.) Evolutionary Pathways and Enigmatic Algae: Cyanidium caldarium (Rhodophyta) and Related Cells. Kluwer, Dordrecht, pp. 215-230.
  3. Coleman, A. W. 1985. Diversity of plastid DNA configuration among classes of eurkaryotic algae. J. Phycol. 21:1-16.
  4. Eggert, A. & Karsten, U. 2010. Low molecular weight carbohydrates in red algae: an ecophysiological and biochemical perspective. In Seckbach, J. & Chapman, D. J. (Eds.) Red Algae in the Genomic Age: Cellular Origin, Life in Extreme Habitats and Astrobiology. Springer, Heidelberg, pp. 443-456.
  5. Gantt, E. & Conti, S. F. 1965. The ultrastructure of Porphyridium cruentum. J. Cell Biol. 26:365-381. https://doi.org/10.1083/jcb.26.2.365
  6. Gantt, E., Edwards, M. R. & Conti, S. F. 1968. Ultrastructure of Porphyridium aerugineum: a blue-green colored Rhodophytan. J. Phycol. 4:65-71. https://doi.org/10.1111/j.1529-8817.1968.tb04678.x
  7. Guiry, M. D. & Guiry, G. M. 2011. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from: http://www.algaebase.org. Accessed Mar 3, 2011.
  8. Hirakawa, Y., Gile, G. H., Ota, S., Keeling, P. J. & Ishida, K. 2010. Characterization of periplastidal compartment: targeting signals in Chlorarachniophytes. Mol. Biol. Evol. 27:1538-1545. https://doi.org/10.1093/molbev/msq038
  9. Karsten, U., Görs, S., Eggert, A. & West, J. A. 2007. Trehalose, digeneaside, and floridoside in the Florideophyceae (Rhodophyta): a reevaluation of its chemotaxonomic value. Phycologia 46:143-150. https://doi.org/10.2216/06-29.1
  10. Karsten, U., Michalik, D., Michalik, M. & West, J. A. 2005. A new unusual low molecular weight carbohydrate in the red algal genus Hypoglossum (Delesseriaceae, Ceramiales) and its possible function as an osmolyte. Planta 222:319-326. https://doi.org/10.1007/s00425-005-1527-3
  11. Karsten, U., West, J. A., Zuccarello, G. C., Engbrodt, R., Yokoyama, A., Hara, Y. & Brodie, J. 2003. Low molecular weight carbohydrates of the Bangiophycidae (Rhodophyta). J. Phycol. 39:584-589. https://doi.org/10.1046/j.1529-8817.2003.02192.x
  12. Karsten, U., West, J. A., Zuccarello, G. C., Nixdorf, O., Barrow, K. D. & King, R. J. 1999. Low molecular weight carbohydrate patterns in the Bangiophyceae (Rhodophyta). J. Phycol. 35:967-976. https://doi.org/10.1046/j.1529-8817.1999.3550967.x
  13. Keane, T. M., Creevey, C. J., Pentony, M. M., Naughton, T. J. & McInerney, J. O. 2006. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol. Biol. 6:29. https://doi.org/10.1186/1471-2148-6-29
  14. Kremer, B. P. 1978. Patterns of photoassimilatory products in Pacific Rhodophyceae. Can. J. Bot. 56:1655-1659. https://doi.org/10.1139/b78-195
  15. Le, S. Q. & Gascuel, O. 2008. An improved general amino acid replacement matrix. Mol. Biol. Evol. 25:1307-1320. https://doi.org/10.1093/molbev/msn067
  16. Okaichi, T., Nishino, S. & Imatomi, Y. 1982. Collection and mass culture. In Japanese Fisheries Society (Ed.) Toxic Phytoplankton: Occurrence, Mode of Action, and Toxins. Koseisha-Koseikaku, Tokyo, pp. 23-34 (in Japanese without English title).
  17. Pickett-Heaps, J. D., West, J. A., Wilson, S. M. & McBride, D. L. 2001. Time-lapse videomicroscopy of cell (spore) movement in red algae. Eur. J. Phycol. 36:9-22. https://doi.org/10.1080/09670260110001735148
  18. Pueschel, C. 1990. Cell structure. In Cole, K. M. & Sheath, R. G. (Eds.) Biology of the Red Algae. Cambridge University Press, New York, pp. 7-41.
  19. Ronquist, F. & Huelsenbeck, J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-1574. https://doi.org/10.1093/bioinformatics/btg180
  20. Saunders, G. W. & Hommersand, M. H. 2004. Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data. Am. J. Bot. 91:1494-1507. https://doi.org/10.3732/ajb.91.10.1494
  21. Schornstein, K. L. & Scott, J. 1982. Ultrastructure of cell division in the unicellular red alga Porphyridium purpureum. Can. J. Bot. 60:85-97. https://doi.org/10.1139/b82-011
  22. Scott, J., Yokoyama, A., Billard, C., Fresnel, J., Hara, Y., West, K. A. & West, J. A. 2008. Neorhodella cyanea, a new genus in the Rhodellophyceae (Rhodophyta). Phycologia 47:560-572. https://doi.org/10.2216/08-27.1
  23. Scott, J. L., Baca, B., Ott, F. D. & West, J. A. 2006. Light and electron microscopic observations on Erythrolobus coxiae gen. et sp. nov. (Porphyridiophyceae, Rhodophyta) from Texas U.S.A. Algae 21:407-416. https://doi.org/10.4490/ALGAE.2006.21.4.407
  24. Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688-2690. https://doi.org/10.1093/bioinformatics/btl446
  25. Swofford, D. L. 2002. PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4.0b10. Sinauer Associates, Sunderland, MA.
  26. West, J. A. 2005. Long term macroalgal culture maintenance. In Anderson, R. A. (Ed.) Algal Culturing Techniques. Academic Press, New York, pp. 157-163.
  27. West, J. A. & Zuccarello, G. C. 1999. Biogeography of sexual and asexual populations in Bostrychia moritziana (Rhodomelaceae, Rhodophyta). Phycol. Res. 47:115-123. https://doi.org/10.1111/j.1440-1835.1999.tb00292.x
  28. Yang, E. C., Scott, J., West, J. A., Orlova, E., Gauthier, D., Küpper, F. C., Yoon, H. S. & Karsten, U. 2010. New taxa of the Porphyridiophyceae (Rhodophyta): Timspurckia oligopyrenoides gen. et sp. nov. and Erythrolobus madagascarensis sp. nov. Phycologia 49:604-616. https://doi.org/10.2216/09-105.1
  29. Yokoyama, A., Scott, J. L., Zuccarello, G. C., Kajikawa, M., Hara, Y. & West, J. A. 2009. Corynoplastis japonica gen. et sp. nov. and Dixoniellales ord. nov. (Rhodellophyceae, Rhodophyta) based on morphological and molecular evidence. Phycol. Res. 57:278-289. https://doi.org/10.1111/j.1440-1835.2009.00547.x
  30. Yoon, H. S., Müller, K. M., Sheath, R. G., Ott, F. D. & Bhattacharya, D. 2006. Defining the major lineages of red algae (Rhodophyta). J. Phycol. 42:482-492. https://doi.org/10.1111/j.1529-8817.2006.00210.x
  31. Yoon, H. S., Zuccarello, G. C. & Bhattacharya, D. 2010. Evolutionary history and taxonomy of red algae. In Seckbach, J. & Chapman, D. J. (Eds.) Red Algae in the Genomic Age: Cellular Origin, Life in Extreme Habitats and Astrobiology. Springer, Heidelberg, pp. 25-42.

Cited by

  1. New unicellular red alga, Bulboplastis apyrenoidosa gen. et sp. nov. (Rhodellophyceae, Rhodophyta) from the mangroves of Japan: Phylogenetic and ultrastructural observations vol.60, pp.2, 2012, https://doi.org/10.1111/j.1440-1835.2012.00643.x
  2. On the genus Rhodella, the emended orders Dixoniellales and Rhodellales with a new order Glaucosphaerales (Rhodellophyceae, Rhodophyta) vol.26, pp.4, 2011, https://doi.org/10.4490/algae.2011.26.4.277
  3. A genetic and ultrastructural study of three clones of Porphyridium purpureum (Bory de Saint-Vincent, 1797) Drew et Ross, 1965 (Rhodophyta) from the marine microalgae collection of the Zhirmunsky institute of marine biology vol.40, pp.5, 2014, https://doi.org/10.1134/S1063074014050022
  4. Mannosylglycerate: structural analysis of biosynthesis and evolutionary history vol.18, pp.5, 2014, https://doi.org/10.1007/s00792-014-0661-x
  5. Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae vol.15, pp.3, 2017, https://doi.org/10.1371/journal.pbio.2000735