참고문헌
- G. L. Acedo and H. K. Xu, Iterative methods for strict pseudo-contractions in Hilbert spaces, Nonlinear Anal. 67 (2007), no. 7, 2258-2271. https://doi.org/10.1016/j.na.2006.08.036
- F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967), 197-228. https://doi.org/10.1016/0022-247X(67)90085-6
- R. E. Bruck, T. Kuczumow, and S. Reich, Convergence of iterates of asymptotically non-expansive mappings in Banach spaces with the uniform Opial property, Colloq. Math. 65 (1993), no. 2, 169-179. https://doi.org/10.4064/cm-65-2-169-179
- A. Genel and J. Lindenstrass, An example concerning fixed points, Israel J. Math. 22 (1975), no. 1, 81-86. https://doi.org/10.1007/BF02757276
- K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174. https://doi.org/10.1090/S0002-9939-1972-0298500-3
- I. Inchan and S. Plubtieng, Strong convergence theorems of hybrid methods for two asymptotically nonexpansive mappings in Hilbert spaces, Nonlinear Anal. Hybrid Syst. 2 (2008), no. 4, 1125-1135. https://doi.org/10.1016/j.nahs.2008.09.006
- T. H. Kim and H. K. Xu, Convergence of the modified Mann's iteration method for asymptotically strict pseudo-contractions, Nonlinear Anal. 68 (2008), no. 9, 2828-2836. https://doi.org/10.1016/j.na.2007.02.029
- Y. Kimura and W. Takahashi, Strong convergence of modied Mann iterations for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal. 64 (2006), no. 5, 1140-1152. https://doi.org/10.1016/j.na.2005.05.059
- Y. Kimura and W. Takahashi, On a hybrid method for a family of relatively nonexpansive mappings in a Banach space, J. Math. Anal. Appl. 357 (2009), no. 2, 356-363. https://doi.org/10.1016/j.jmaa.2009.03.052
- W. A. Kirk, Fixed point theorems for non-Lipschitzian mappings of asymptotically non-expansive type, Israel J. Math. 17 (1974), 339-346. https://doi.org/10.1007/BF02757136
- W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510. https://doi.org/10.1090/S0002-9939-1953-0054846-3
- G. Marino and H. K. Xu, Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl. 329 (2007), no. 1, 336-346. https://doi.org/10.1016/j.jmaa.2006.06.055
- C. Martinez-Yanes and H. K. Xu, Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal. 64 (2006), no. 11, 2400-2411. https://doi.org/10.1016/j.na.2005.08.018
- S. Y. Matsushita and W. Takahashi, A strong convergence theorem for relatively non-expansive mappings in a Banach space, J. Approx. Theory 134 (2005), no. 2, 257-266. https://doi.org/10.1016/j.jat.2005.02.007
- K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003), no. 2, 372-379. https://doi.org/10.1016/S0022-247X(02)00458-4
- S. Plubtieng and K. Ungchittrakool, Strong convergence of modified Ishikawa iteration for two asymptotically nonexpansive mappings and semigroups, Nonlinear Anal. 67 (2007), no. 7, 2306-2315. https://doi.org/10.1016/j.na.2006.09.023
- L. Qihou, Convergence theorems of the sequence of iterates for asymptotically demicon-tractive and hemicontractive mappings, Nonlinear Anal. 26 (1996), no. 11, 1835-1842. https://doi.org/10.1016/0362-546X(94)00351-H
-
X. Qin, S. Y. Cho, and S. M. Kang, On hybrid projection methods for asymptotically
$quasi-{\phi}-nonexpansive$ mappings, Appl. Math. Comput. 215 (2010), no. 11, 3874-3883. https://doi.org/10.1016/j.amc.2009.11.031 - X. Qin, Y. J. Cho, S. M. Kang, and M. Shang, A hybrid iterative scheme for asymptot- ically k-strict pseudo-contractions in Hilbert spaces, Nonlinear Anal. 70 (2009), no. 5, 1902-1911. https://doi.org/10.1016/j.na.2008.02.090
- X. Qin, Y. J. Cho, S. M. Kang, and H. Zhou, Convergence theorems of common fixed points for a family of Lipschitz quasi-pseudocontractions, Nonlinear Anal. 71 (2009), no. 1-2, 685-690. https://doi.org/10.1016/j.na.2008.10.102
- X. Qin, S. Y. Cho, and J. K. Kim, Convergence results on asymptotically pseudocontractive mappings in the intermediate sense, Fixed Point Theory Appl. 2010 (2010), Article ID 186874.
- B. E. Rhoades, Comments on two xed point iteration methods, J. Math. Anal. Appl. 56 (1976), no. 3, 741-750. https://doi.org/10.1016/0022-247X(76)90038-X
- D. R. Sahu, H. K. Xu, and J. C. Yao, Asymptotically strict pseudocontractive mappings in the intermediate sense, Nonlinear Anal. 70 (2009), no. 10, 3502-3511. https://doi.org/10.1016/j.na.2008.07.007
- J. Schu, Iterative construction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 158 (1991), no. 2, 407-413. https://doi.org/10.1016/0022-247X(91)90245-U
- W. Takahashi, Y. Takeuchi, and R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 341 (2008), no. 1, 276-286. https://doi.org/10.1016/j.jmaa.2007.09.062
- H. Zegeye and N. Shahzad, Strong convergence theorems for a finite family of nonex-pansive mappings and semigroups via the hybrid method, Nonlinear Anal. 72 (2010), no. 1, 325-329. https://doi.org/10.1016/j.na.2009.06.056
- H. Zhou, Demiclosedness principle with applications for asymptotically pseudo-contractions in Hilbert spaces, Nonlinear Anal. 70 (2009), no. 9, 3140-3145. https://doi.org/10.1016/j.na.2008.04.017