DOI QR코드

DOI QR Code

Alumina Supported Ammonium Dihydrogenphosphate (NH4H2PO4/Al2O3): Preparation, Characterization and Its Application as Catalyst in the Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles

  • Received : 2011.04.25
  • Accepted : 2011.05.31
  • Published : 2011.07.20

Abstract

Preparation of ammonium dihydrogenphosphate supported on alumina ($NH_4H_2PO_4/Al_2O_3$) and its primary application as a solid acid supported heterogeneous catalyst to the synthesis of 1,2,4,5-tetrasubstituted imidazoles by a one-pot, four-component condensation of benzil, aromatic aldehydes, primary amines, and ammonium acetate under thermal solvent-free conditions were described. The results showed that the novel catalyst has high activity and the desired products were obtained in high yields. Furthermore, the products could be separated simply from the catalyst, and the catalyst could be recycled and reused with only slight reduction in its catalytic activity. Characterization of the catalyst was performed by FT-IR spectroscopy, the $N_2$ adsorption/desorption analysis (BET), thermal analysis (TG/DTG), and X-ray diffraction (XRD) techniques.

Keywords

References

  1. Clark, J. H.; Rhodes, C. N. Clean Synthesis Using Porous Inorganic Solid Catalysts and Supported Reagents; Royal Society of Chemistry: Cambridge, 2000.
  2. Gerard, V. S.; Notheisz, F. Heterogeneous Catalysis in Organic Chemistry; Elsevier: San Diego, Calif, 2000.
  3. Rafiee, E.; Rashidzadeh, S.; Azada, A. J. Mol. Catal. A: Chem. 2007, 261, 49. https://doi.org/10.1016/j.molcata.2006.07.058
  4. Davoodnia, A.; Bakavoli, M.; Barakouhi, Gh.; Tavakoli-Hoseini, N. Chin. Chem. Lett. 2007, 18, 1483. https://doi.org/10.1016/j.cclet.2007.10.013
  5. Tavakoli-Hoseini, N.; Davoodnia, A. Asian J. Chem. 2010, 22, 7197.
  6. Davoodnia, A.; Tavakoli-Nishaburi, A.; Tavakoli-Hoseini, N. Bull. Korean Chem. Soc. 2011, 32, 635. https://doi.org/10.5012/bkcs.2011.32.2.635
  7. Kozhevinkov, I. V. In Catalysis by Poly Oxometalates; Wiley: Chichester, 2002; p 2-22.
  8. Hajipour, A. R.; Ruoho, A. E. Tetrahedron Lett. 2005, 46, 8307. https://doi.org/10.1016/j.tetlet.2005.09.178
  9. Kantevari, S.; Bantu, R.; Nagarapu, L. J. Mol. Catal. A: Chem. 2007, 269, 53. https://doi.org/10.1016/j.molcata.2006.12.039
  10. Davoodnia, A.; Roshani, M.; Malaeke, S. H.; Bakavoli, M. Chin. Chem. Lett. 2008, 19, 525. https://doi.org/10.1016/j.cclet.2008.01.037
  11. Khan, A. T.; Ghosh, S.; Choudhury, L. H. Eur. J. Org. Chem. 2006, 9, 2226.
  12. Zeinali-Dastmalbaf, M.; Davoodnia, A.; Heravi, M. M.; Tavakoli-Hoseini, N.; Khojastehnezhad, A.; Zamani, H. A. Bull. Korean Chem. Soc. 2011, 32, 656. https://doi.org/10.5012/bkcs.2011.32.2.656
  13. Khojastehnezhad, A.; Davoodnia, A.; Bakavoli, M.; Tavakoli- Hoseini, N.; Zeinali-Dastmalbaf, M. Chin. J. Chem. 2011, 29, 297. https://doi.org/10.1002/cjoc.201190081
  14. Li, H.; Yua, X.; Tua, S. T.; Yanb, J.; Wanga, Z. Appl. Catal. A 2010, 387, 215. https://doi.org/10.1016/j.apcata.2010.08.030
  15. Lewis, J. R. Nat. Prod. Rep. 2002, 19, 223. https://doi.org/10.1039/b007741k
  16. Ho, J. Z.; Hohareb, R. M.; Ahn, J. H.; Sim, T. B.; Rapoport, H. J. Org. Chem. 2003, 68, 109. https://doi.org/10.1021/jo020612x
  17. Misono, M. Chem. Commun. 2001, 1141.
  18. Black, J. W.; Durant, G. J.; Emmett, J. C.; Ganellin, C. R. Nature 1974, 248, 65. https://doi.org/10.1038/248065a0
  19. Ucucu, U.; Karaburun, N. G.; Iskdag, I. Il Farmaco 2001, 56, 285. https://doi.org/10.1016/S0014-827X(01)01076-X
  20. Antolini, M.; Bozzoli, A.; Ghiron, C.; Kennedy, G.; Rossi, T.; Ursini, A. Bioorg. Med. Chem. Lett. 1999, 9, 1023. https://doi.org/10.1016/S0960-894X(99)00112-2
  21. Wang, L.; Woods, K. W.; Li, Q.; Barr, K. J.; McCroskey, R. W.; Hannick, S. M.; Gherke, L.; Credo, R. B.; Hui, Y.-H.; Marsh, K.; Warner, R.; Lee, J. Y.; Zielinsky-Mozng, N.; Frost, D.; Rosenberg, S. H.; Sham, H. L. J. Med. Chem. 2002, 45, 1697. https://doi.org/10.1021/jm010523x
  22. Lee, J. C.; Laydon, J. T.; McDonnell, P. C.; Gallagher, T. F.; Kumar, S.; Green, D.; McNully, D.; Blumenthal, M.; Heys, J. R.; Landvatter, S. W.; Strickler, J. E.; McLauhlin, M. M.; Siemens, I. R.; Fisher, S. M.; Livi, J. P.; White, J. R.; Adams, J. L.; Young, P. R. Nature 1994, 372, 739. https://doi.org/10.1038/372739a0
  23. Chowdhury, S.; Mohan, R. S.; Scott, J. L. Tetrahedron 2007, 63, 2363. https://doi.org/10.1016/j.tet.2006.11.001
  24. Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39. https://doi.org/10.1021/cr940472u
  25. Heravi, M. M.; Derikvand, F.; Haghighi, M. Monatsh. Chem. 2008, 139, 31. https://doi.org/10.1007/s00706-007-0736-9
  26. Hasaninejad, A.; Zare, A.; Shekouhy, M.; Ameri Rad, J. J. Comb. Chem. 2010, 12, 844. https://doi.org/10.1021/cc100097m
  27. Shaterian, H. R.; Ranjbar, M. J. Mol. Liq. 2011, 160, 40. https://doi.org/10.1016/j.molliq.2011.02.012
  28. Davoodnia, A.; Heravi, M. M.; Safavi-Rad, Z.; Tavakoli-Hoseini, N. Synth. Commun. 2010, 40, 2588. https://doi.org/10.1080/00397910903289271
  29. Nagarapu, L.; Apuri, S.; Kantevari, S. J. Mol. Catal. A: Chem. 2007, 266, 104. https://doi.org/10.1016/j.molcata.2006.10.056
  30. Kantevari, S.; Vuppalapati, S. V. N.; Biradar, D. O.; Nagarapu, L. J. Mol. Catal. A: Chem. 2007, 266, 109. https://doi.org/10.1016/j.molcata.2006.10.048
  31. Sharma, S. D.; Hazarika, P.; Konwar, D. Tetrahedron Lett. 2008, 49, 2216. https://doi.org/10.1016/j.tetlet.2008.02.053
  32. Karimi-Jaberi, Z.; Barekat, M. Chin. Chem. Lett. 2010, 21, 1183. https://doi.org/10.1016/j.cclet.2010.06.012
  33. Sadeghi, B.; Mirjalili, B. B. F.; Hashemi, M. M. Tetrahedron Lett. 2008, 49, 2575. https://doi.org/10.1016/j.tetlet.2008.02.100
  34. Lantos, I.; Zhang, W.-Y.; Shui, X.; Eggleston, D. S. J. Org. Chem. 1993, 58, 7092. https://doi.org/10.1021/jo00077a033
  35. Balalaie, S.; Hashemi, M. M.; Akhbari, M. Tetrahedron Lett. 2003, 44, 1709. https://doi.org/10.1016/S0040-4039(03)00018-2
  36. Davoodnia, A.; Heravi, M. M.; Rezaei-Daghigh, L.; Tavakoli- Hoseini, N. Monatsh. Chem. 2009, 140, 1499. https://doi.org/10.1007/s00706-009-0193-8
  37. Davoodnia, A.; Bakavoli, M.; Moloudi, R.; Khashi, M.; Tavakoli-Hoseini, N. Monatsh. Chem. 2010, 141, 867. https://doi.org/10.1007/s00706-010-0329-x
  38. Davoodnia, A.; Heravi, M. M.; Rezaei-Daghigh, L.; Tavakoli-Hoseini, N. Chin. J. Chem. 2010, 28, 429. https://doi.org/10.1002/cjoc.201090091
  39. Davoodnia, A.; Allameh, S.; Fakhari, A. R.; Tavakoli-Hoseini, N. Chin. Chem. Lett. 2010, 21, 550. https://doi.org/10.1016/j.cclet.2010.01.032
  40. Davoodnia, A. Asian J. Chem. 2010, 22, 1595.
  41. Hammoudeh, A. Y.; Saada, S. M.; Mahmoud, S. S. Jordan J. Chem. 2007, 2, 53.
  42. Hammoudeha, A.; Mahmouda, S. S.; Gharaibeh, S. Appl. Catal. A: General 2003, 243, 147. https://doi.org/10.1016/S0926-860X(02)00559-8
  43. Wana, H.; Li, D.; Dai, Y.; Hu, Y.; Liu, B.; Dong, L. J. Mol. Catal. A: Chem. 2010, 332, 32. https://doi.org/10.1016/j.molcata.2010.08.016

Cited by

  1. ChemInform Abstract: Alumina Supported Ammonium Dihydrogenphosphate (NH4H2PO4/Al2O3): Preparation, Characterization and Its Application as Catalyst in the Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles. vol.42, pp.46, 2011, https://doi.org/10.1002/chin.201146124
  2. The Use of Supported Acidic Ionic Liquids in Organic Synthesis vol.19, pp.7, 2014, https://doi.org/10.3390/molecules19078840
  3. A rapid, efficient, and high-yielding synthesis of 4,4′-(arylmethylene)bis(3-methyl-1H-pyrazol-5-ol) derivatives catalyzed by 12-tungstophosphoric acid (H3PW12O40) vol.41, pp.11, 2015, https://doi.org/10.1007/s11164-014-1896-y
  4. ]chromenes vol.30, pp.8, 2016, https://doi.org/10.1002/aoc.3479
  5. Copper(I) complex of 1,3-DimethylBarbituric acid modified SBA-15 and its catalytic role for the synthesis of 2,3-Dihydroquinazolin-4(1H)-ones and Imidazoles vol.31, pp.12, 2017, https://doi.org/10.1002/aoc.3843
  6. Oxidative Desulfurization of Diesel Fuel Using a Brønsted Acidic Ionic Liquid Supported on Silica Gel vol.31, pp.9, 2017, https://doi.org/10.1021/acs.energyfuels.6b03505
  7. Synthesis and biological evaluation of 1,2,4,5-tetrasubstituted imidazoles vol.43, pp.8, 2017, https://doi.org/10.1007/s11164-017-2886-7
  8. -chromene-3-carboxamides Catalyzed by a Keplerate-type Giant Nanoporous Isopolyoxomolybdate vol.50, pp.6, 2018, https://doi.org/10.1080/00304948.2018.1537732
  9. An Efficient Method for Knoevenagel Condensation Catalyzed by Tetrabutylammonium hexatungstate [TBA]2[W6O19] as Novel and Reusable Heterogeneous Catalyst vol.42, pp.7, 2012, https://doi.org/10.1080/15533174.2012.680140
  10. Polymer Support Immobilized Acidic Ionic Liquid: Preparation and Its Application as Catalyst in the Synthesis of Hantzsch 1,4-Dihydropyridines vol.33, pp.7, 2011, https://doi.org/10.5012/bkcs.2012.33.7.2140
  11. Preparation, Characterization and First Application of Aerosil Silica Supported Acidic Ionic Liquid as a Reusable Heterogeneous Catalyst for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones vol.33, pp.8, 2011, https://doi.org/10.5012/bkcs.2012.33.8.2724
  12. Nano α-Al2O3supported ammonium dihydrogen phosphate (NH4H2PO4/Al2O3): preparation, characterization and its applicati vol.4, pp.81, 2011, https://doi.org/10.1039/c4ra07813f
  13. Performance Evaluation of Newly Prepared Alumina Supported Polyphosphoric Acid (PPA/Al2O3) as Efficient and Reusable Catalyst for the Synthesis of 1,8-Dioxodecahydroacridines vol.44, pp.1, 2011, https://doi.org/10.1080/15533174.2013.768645
  14. New Conditions for the Effective Synthesis of Tri and Tetrasubstituted Imidazoles Catalysed by Recyclable Indium (III) Triflate and Magnesium Sulfate Heptahydrate vol.38, pp.1, 2011, https://doi.org/10.3184/174751914x13863406090407
  15. Catalytic performance of a Keplerate-type, giant-ball nanoporous isopolyoxomolybdate as a highly efficient recyclable catalyst for the synthesis of biscoumarins vol.71, pp.3, 2011, https://doi.org/10.1515/znb-2015-0151
  16. Another application of newly prepared Brønsted-acidic ionic liquids as highly efficient reusable catalysts for neat synthesis of amidoalkyl naphthols vol.3, pp.1, 2011, https://doi.org/10.1080/23312009.2017.1312675
  17. Synthesis and characterization of nano-copper ferrite as a magnetically separable catalyst for the one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles under solvent-free vol.47, pp.5, 2011, https://doi.org/10.1080/15533174.2016.1212223
  18. K2CO3/Al2O3: An efficient and recyclable catalyst under solvent free conditions for the reaction of electron-deficient nitro-olefins with 1,3-dicarbonyl com vol.4, pp.1, 2011, https://doi.org/10.1080/23312009.2018.1455346
  19. Phosphomolybdic acid supported on Schiff base functionalized graphene oxide nanosheets: Preparation, characterization, and first catalytic application in the multi‐component synthesis of tetrahy vol.33, pp.5, 2019, https://doi.org/10.1002/aoc.4881
  20. Catalytic Synthesis of 1,2,4,5‐Tetrasubstituted 1H‐Imidazole Derivatives: State of the Art vol.361, pp.12, 2011, https://doi.org/10.1002/adsc.201801381
  21. K2CO3/Al2O3: An Efficient and Recyclable Catalyst for One-Pot, Three Components Synthesis of α-Aminophosphonates and Bioactivity Evaluation vol.31, pp.10, 2019, https://doi.org/10.14233/ajchem.2019.22194
  22. Novel water‐soluble polymer coatings control NPK release rate, improve soil quality and maize productivity vol.138, pp.42, 2021, https://doi.org/10.1002/app.51239
  23. Combustion process of nanofluids consisting of oxygen molecules and aluminum nanoparticles in a copper nanochannel using molecular dynamics simulation vol.28, pp.None, 2021, https://doi.org/10.1016/j.csite.2021.101628
  24. Feasibility study of using MWCNT-TiO2 (25:75) in 5W50 as an optimizer for engine oils with the aim of reduce the cold start damages vol.129, pp.None, 2011, https://doi.org/10.1016/j.icheatmasstransfer.2021.105678
  25. A Comprehensive Thermoeconomic Evaluation and Multi-Criteria Optimization of a Combined MCFC/TEG System vol.13, pp.23, 2021, https://doi.org/10.3390/su132313187
  26. A state of art review of the viscosity behavior of nano-lubricants containing MWCNT nanoparticles: Focusing on engine lubrication goals vol.346, pp.None, 2022, https://doi.org/10.1016/j.molliq.2021.118264
  27. A review on key aspects of wet granulation process for continuous pharmaceutical manufacturing of solid dosage oral formulations vol.15, pp.2, 2011, https://doi.org/10.1016/j.arabjc.2021.103598
  28. A review on key aspects of wet granulation process for continuous pharmaceutical manufacturing of solid dosage oral formulations vol.15, pp.2, 2011, https://doi.org/10.1016/j.arabjc.2021.103598