DOI QR코드

DOI QR Code

SFRP Synthesis of Acenaphthylene Oligomers and Block Copolymers. Potential Light Harvesting Structures

  • Ali, Dildar (Department of Chemistry, Queen's University) ;
  • Ahmed, Zaheer (H.E.J. Research Institute of Chemistry, University of Karachi) ;
  • Dust, Julian M. (Departments of Chemistry and Environmental Science, Grenfell Campus, Memorial University of Newfoundland) ;
  • Kazmaier, Peter M. (The Xerox Research Centre of Canada) ;
  • Buncel, Erwin (Department of Chemistry, Queen's University)
  • Received : 2011.03.02
  • Accepted : 2011.05.31
  • Published : 2011.07.20

Abstract

Azo-acenaphthylene oligomers with repeating acenaphthylene units "n" up to 4, 5, 7, 17 and 19 have been prepared successfully using nitroxide mediated Stable Free Radical Polymerization (SFRP). Azo-acenaphthylene oligomers, reversibly end-capped by the stable nitroxide 2,2,6,6-tetramethyl-1-piperidinoxyl (TEMPO), were further reacted via radical addition to 4-(naphthalenemethoxy)styrene monomer for diblock co-polymer formation. Characterization of the oligomers and diblock co-polymers was accomplished using MALDI-MS supported by GPC (Gel Permeation Chromatography) and $^1H$ NMR spectrometry. MALDI-MS afforded definitive results by providing an inter-peak interval of 152 (m/z), corresponding to acenaphthylene monomer, and inter-peak interval of 260 (m/z) for the naphthalenemethoxystyrene monomer unit in block copolymers. Our study opens the way to control the number of repeat units in the oligomers. Further these oligomers can be tailored with various monomers for the formation of block copolymers.

Keywords

References

  1. Balzani, V.; Credi, A.; Venturi, M. Org. Nanostruct. 2008, 1-31.
  2. Chu, C. C.; Bassani, D. M. Photochem. & Photobiol. Sci. 2008, 7, 521-530. https://doi.org/10.1039/b800113h
  3. Trenor, S. R.; Schultz, A. R.; Love, B. J.; Long, T. E. Chem. Rev. 2004, 104, 3059-3077 . https://doi.org/10.1021/cr030037c
  4. Bredas, J. L.; Beljonne, B.; Coropceanu, V.; Cornil, J. Chem. Rev. 2004, 104, 4971-5003. https://doi.org/10.1021/cr040084k
  5. Chen, M.; Ghiggino, K. P.; Thang, S. H.; Wilson, G. J. Polym. Int. 2006, 5, 757-763.
  6. Adronov, A.; Gilat, S. L.; Frechet, J. M. J.; Ohta, K.; Neuwahl, F. V. R.; Fleming, G. R. J. Am. Chem. Soc. 2000, 122, 1175-1185. https://doi.org/10.1021/ja993272e
  7. Webber, S. E. Chem. Rev. 1990, 90, 1469-1482. https://doi.org/10.1021/cr00106a005
  8. Abdallah, D.; Ghani, M. A. A.; Cunningham, M. F.; Kazmaier, P. M.; Keoshkerian, B.; Buncel, E. Can. J. Chem. 2004, 82, 1393- 1402. https://doi.org/10.1139/v04-107
  9. Cheon, K. S.; Kazmaier, P. M.; Keum, S. R.; Park, K. T.; Buncel, E. Can. J. Chem.2004, 82, 551-566. https://doi.org/10.1139/v04-009
  10. Ghani, M. A. A.; Abdallah, D.; Kazmaier, P. M.; Keoshkerian, B.; Buncel, E. Can. J. Chem. 2004, 82, 1403-1412. https://doi.org/10.1139/v04-106
  11. Abdallah, D.; Whelan, J.; Dust, J. M.; Hoz, S.; Buncel, E. J. Phys. Chem. A 2009, 113, 6640-6647. https://doi.org/10.1021/jp901596t
  12. Guillet, J. E. Pure Appl. Chem. 1991, 63, 917-924. https://doi.org/10.1351/pac199163070917
  13. Ali, D.; Ahmed, Z.; Kazmaier, P. M.; Buncel, E. Can. J. Chem. 2010, 88, 910-921. https://doi.org/10.1139/V10-072
  14. Hawker, C. J. Acc. Chem. Res. 1997, 30, 373-384. https://doi.org/10.1021/ar960248m
  15. Hawker, C. J.; Bosman, A. W.; Harth, E. Chem. Rev. 2001, 101, 3661-3688. https://doi.org/10.1021/cr990119u
  16. Veregin, R. P. N.; Georges, M. K.; Hamer, G. K.; Kazmaier, P. Trends in Polym. Sci. 1994, 2, 66-72.
  17. Sawamoto, M.; Kamigaito, M. Trends in Polym. Sci. 1996, 4, 371-377.
  18. Uegaki, H.; Kotani, Y.; Kamigaito, M.; Sawamoto, M. Macromolecules 1997, 30, 2249-2253. https://doi.org/10.1021/ma961367k
  19. Fuuzaki, Y.; Tomita, Y., Terashima, T.; Ouchi, M.; Sawamoto, M. Macromolecules 2010, 43, 5989-5995. https://doi.org/10.1021/ma100871n
  20. Lowe, A. B.; Summerlin, B. S.; Donovan, M. S.; Thomas, D. B.; Hennaux, P.; McCormick, C. L. Advances in Controlled/Living Radical Polymerization; American Chemical Society Symposium Series 854; Matyjaszewski, K., Ed.; American Chemical Society: Washington, D.C., 2003; pp 586-602.
  21. McCormick, C. L.; Lowe, A. B. Acc. Chem. Res. 2004, 37, 312- 325. https://doi.org/10.1021/ar0302484
  22. Chen, M.; Ghiggino, K. P.; Mau, A. W. H.; Rizzardo, E.; Sasse, W. H. F.; Thang, S. H.; Wilson, G. J. Macromol 2004, 37, 5479-5481. https://doi.org/10.1021/ma049037k
  23. Chen, M.; Ghiggino, K. P.; Rizzardo, E.; Thang, S. H.; Wilson, G. J. Chem. Commun. 2008, 1112-1114.
  24. Chen, M.; Ghiggino, K. P.; Mau, A. W. H.; Rizzardo, E.; Thang, S. H.; Gilson, G. J. Chem. Commun. 2002, 2276-2277.
  25. Chen, L. H.; Ghiggino, K. P.; Mau, A. W. H.; Sasse, W. H. F.; Thang, S. H.; Wilson, G. J. Macromol 2005, 38, 3475-3481. https://doi.org/10.1021/ma047361+
  26. Pasch, H.; Schrepp, W. MALDI-TOF Mass Spectrometry of Synthetic Polymer; Springer: New York, N.Y. 2003.
  27. Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals, 3rd ed; Pergamon Press: Toronto, Canada. 1988.
  28. Dust, J. M.; Arnold, D. R. J. Am. Chem. Soc. 1983, 105, 1221- 1227. https://doi.org/10.1021/ja00343a024
  29. Gopalan, P.; Zhang, Y.; Li, X.; Wiesner, U.; Ober, C. K. Macromol. 2003, 36, 3357-3364. https://doi.org/10.1021/ma021573u
  30. Gopalan, P.; Li, X.; Li, M.; Ober, C. K.; Gonzales, C. P.; Hawker, C. J. J. Polym. Sci: Part A: Polym. Chem. 2003, 41, 3640-3656. https://doi.org/10.1002/pola.10930

Cited by

  1. Studying the Thermal Degradation of Different Polyacenaphthylenes via Thermogravimetric Analysis Combined With Fourier Transform Infrared Spectroscopy (TGA-FTIR) vol.51, pp.9, 2014, https://doi.org/10.1080/10601325.2014.936278
  2. Prospects for solar synthesis vol.63, pp.7, 2011, https://doi.org/10.1351/pac199163070917
  3. Novel Nicotinonitriles and Thieno[2,3‐ b ]pyridines as Potent Biofilm and COX‐2 Inhibitors: Synthesis, In Vitro and In Silico Studies vol.5, pp.28, 2011, https://doi.org/10.1002/slct.202001208