DOI QR코드

DOI QR Code

Study on Anomalous Scaling Exponents for Molecular Thin Film Growth Using Surface Lateral Diffusion Model

  • Received : 2011.04.07
  • Accepted : 2011.05.18
  • Published : 2011.07.20

Abstract

Anomalous scaling behaviors such as significantly large growth exponent (${\beta}$) and small reciprocal of dynamic exponent (1/z) values for many molecular crystalline thin films have been reported. In this study, the variation of scaling exponent values and consequent growth behaviors of molecular thin films were more quantitatively analysed using a (1+1)-dimensional surface lateral diffusion model. From these simulations, influence of step edge barriers and grain boundaries of molecular thin films on the various scaling exponent values were elucidated. The simulation results for the scaling exponents were also well consistent with the experimental data for previously reported molecular thin film systems.

Keywords

References

  1. Gundlach, D. J.; Lin, Y. Y.; Jackson, T. N.; Nelson, S. F.; Schlom, D. G. IEEE Electron Device Lett. 1997, 18, 87. https://doi.org/10.1109/55.556089
  2. Lunt, R. R.; Benziger, J. B.; Forrest, S. R. Adv. Mater. 2007, 19, 4229. https://doi.org/10.1002/adma.200701572
  3. Rim, S. B.; Fink, R. F.; Schoneboom, J. C.; Erk, P.; Peumans, P. Appl. Phys. Lett. 2007, 91, 173504. https://doi.org/10.1063/1.2783202
  4. Sullivan, P.; Jones, T. S.; Ferguson, A. J.; Heutz, S. Appl. Phys. Lett. 2007, 91, 233114. https://doi.org/10.1063/1.2821229
  5. Yim, S.; Jones, T. S. Phys. Rev. B 2006, 73, 161305. https://doi.org/10.1103/PhysRevB.73.161305
  6. Yim, S.; Kim, K.-I.; Jones, T. S. J. Phys. Chem. C 2007, 111, 10993. https://doi.org/10.1021/jp0715272
  7. Yim, S.; Jones, T. S. Appl .Phys. Lett. 2009, 94, 021911. https://doi.org/10.1063/1.3072805
  8. Kim, J.; Lim, N.; Park, C. R.; Yim, S. Surf. Sci. 2010, 604, 1143. https://doi.org/10.1016/j.susc.2010.03.029
  9. Krug, J. Adv. Phys. 1997, 46, 130.
  10. Barabasi, A. L,; Stanley, H. E. Fractal Concepts in Surface Growth; Cambridge University Press: 1995.
  11. Biscarini, F.; Samorí, P.; Greco, O.; Zamboni, R. Phys. Rev. Lett. 1997, 78, 2389. https://doi.org/10.1103/PhysRevLett.78.2389
  12. Zhao, Y.-P.; Fortin, J. B.; Bonvallet, G.; Wang, G.-C.; Lu, T.-M. Phys. Rev. Lett. 2000, 85, 3229. https://doi.org/10.1103/PhysRevLett.85.3229
  13. Hong, D.; Do, Y. R.; Kwak, H. T.; Yim, S. J. Appl. Phys. 2011, 109, 063507. https://doi.org/10.1063/1.3553884
  14. Dürr, A. C.; Schreiber, F.; Ritley, K. A.; Kruppa, V.; Krug, J.; Dosch, H.; Struth, B. Phys. Rev. Lett. 2003, 90, 016104. https://doi.org/10.1103/PhysRevLett.90.016104
  15. Palasantzas, G.; Krim, J. Phys. Rev. B 1993, 48, 2873. https://doi.org/10.1103/PhysRevB.48.2873
  16. Zhao, Y.-P.; Fortin, J. B.; Bonvallet, G.; Wang, G.-C.; Lu, T.-M. Phys. Rev. Lett. 2000, 85, 3229. https://doi.org/10.1103/PhysRevLett.85.3229
  17. Collins, G. W.; Letts, S. A.; Fearon, E. M.; McEachern, R. L.; Bernat, T. P. Phys. Rev. Lett. 1994, 73, 708. https://doi.org/10.1103/PhysRevLett.73.708

Cited by

  1. Scaling behavior of ZnPc thin films grown on CuI interlayers vol.11, pp.1, 2015, https://doi.org/10.1007/s13391-014-4178-3
  2. Boundary crossover in semi-infinite non-equilibrium growth processes vol.2014, pp.2, 2011, https://doi.org/10.1088/1742-5468/2014/02/p02018