• Title/Summary/Keyword: Molecular thin film

Search Result 336, Processing Time 0.028 seconds

Fabrication and Characteristics of LB Ultra-thin Film Capacitor (I) (LB 초박막 커패시터의 제작 및 특성 (I))

  • 최용성;신훈규;권영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.277-280
    • /
    • 1995
  • We had experiment using LB method that can fabricate molecular order ultra-thin film below 100${\AA}$. LB mettled has known as main technology of information society in 21C, because it is nut only free oriention and alignment of molecular but also ability of thickness control as molecular order. In this paper, the fabricated condition and physical properities of functional ultra-thin film of molecular order was investigated and highly efficient ultra-thin film capacitor was fabricated by using ultra-thin LB film for application as electronic device. Possibility of ultra-thin film capacitor was researched by analizing rind measuring electrical properties. Polyimide ultra-thin LB film capacitor was fabricated, ensured theoretically rind experimentally its possibility in range of 10Hz∼ 1MHz through its frequency characteristics.

  • PDF

Fabrication and Characteristics of LB Ultra-thin Film Capacitor (II) (LB 초박막 커패시터의 제작 및 특성 (II))

  • 유승엽;박재철;권영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.244-247
    • /
    • 1996
  • We had experiment using LB method that can fabricate molecular order ultra-thin film below 100${\AA}$. LB method has known as main technology of information society in 21C, because it is not only free orientation and alignment of molecular but also ability of thickness control as molecular order. In this paper, the fabricated condition and physical properties of functional ultra-thin film of molecular order was investigated and highly efficient ultra-thin film capacitor was fabricated by using ultra-thin LB film for application as electronic device. Possibility of ultra-thin film capacitor was researched by analyzing and measuring electrical properties. Polyimide ultra-thin LB film capacitor was fabricated, ensured theoretically and experimentally its possibility in range of 10Hz∼lMHz through its frequency characteristics.

  • PDF

Investigation of Surface Morphology for Nylon 4,6 Thin Film by Molecular Layer Deposition

  • Gwon, Deok-Hyeon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.419-419
    • /
    • 2012
  • We fabricated the Polyamide 4,6 (PA46) thin film using Adipoyl chloride and 1,4-butadiamine. PA46 film was grown at $70^{\circ}C$ by Molecular Layer Deposition (MLD) method. MLD is sequential and self-terminating fabrication method for organic thin film. The growth rate of PA46 is $3.5{\acute{\AA}}$ cycle. The thickness of PA46 film was measured by Ellipsometer. Surface morphology of this film was investigated by Atomic Force Microscopy (AFM) and roughness is directly proportional to number of growing cycles.

  • PDF

Study on Anomalous Scaling Exponents for Molecular Thin Film Growth Using Surface Lateral Diffusion Model

  • Gong, Hye-Jin;Yim, Sang-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2237-2242
    • /
    • 2011
  • Anomalous scaling behaviors such as significantly large growth exponent (${\beta}$) and small reciprocal of dynamic exponent (1/z) values for many molecular crystalline thin films have been reported. In this study, the variation of scaling exponent values and consequent growth behaviors of molecular thin films were more quantitatively analysed using a (1+1)-dimensional surface lateral diffusion model. From these simulations, influence of step edge barriers and grain boundaries of molecular thin films on the various scaling exponent values were elucidated. The simulation results for the scaling exponents were also well consistent with the experimental data for previously reported molecular thin film systems.

Continuum Model considering Surface Effect for Thin film (박막구조해석을 위한 표면효과를 고려하는 연속체 모델)

  • Choi, Jin-Bok;Jung, Kwang-Sub;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.527-531
    • /
    • 2007
  • The classical continuum theory-based thin film model is independent of their size and the surface effect can be ignored. But the surface to bulk ratio becomes very large in nano-size structures such as nano film, nano wire and nano beam. In this case, surface effect plays an important role and its contribution of the surface effect must be considered. Molecular dynamics simulation has been a conventional way to analyze these ultra-thin structures but structures in the range between submicro and micro are difficult to analyze by classical molecular dynamics due to the restriction of computing resources and time. Therefore, in present study, the continuum-based method is considered to predict the overall physical and mechanical properties of the structures in nano-scale, especially, for the thin-film. The proposed continuum based-thin plate finite element is efficient and reliable for the prediction of nano-scale film behavior.

  • PDF

Characterization of Thin Liquid Films Using Molecular Dynamics Simulation

  • Lee, Jaeil;Park, Seungho;Ohmyoung Kwon;Park, Young-Ki;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1477-1484
    • /
    • 2002
  • Various characteristics of a thin liquid film in its vapor-phase are investigated using the molecular dynamics technique. Local distributions of the temperature, density, normal and tangential pressure components, and stress are calculated for various film thicknesses and temperature levels. Distributions of local stresses change considerably with respect to film thicknesses, and interracial regions on both sides of the film start to overlap with each other as the film becomes thinner. Integration of the local stresses, i.e., the surface tension, however, does not vary much regardless of the interfacial overlap. The minimum thickness of a liquid film before rupturing is estimated with respect to the calculation domain sizes and is compared with a simple theoretical relation.

Considerations for Making Liposomes by Thin Film-Hydration Method

  • Gyeong-Tak Byeon;Ji-Yoon Son;Jeongsoo Yoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.2
    • /
    • pp.151-156
    • /
    • 2022
  • Liposomes are bilayered particles that are surrounded by an aqueous solvent with amphiphilic substances such as phospholipids. Liposomes have the potential to overcome the limitations of physiochemical properties of existing drugs, and are therefore widely used in research for the treatment of many diseases, especially cancer. Currently, there are many liposome manufacturing methods that use various lipids and amphiphiles. Among them, the thin film-hydration method is a traditional and very simple method to prepare liposomes by hydrating a dry lipid film in an aqueous solvent, which has been widely used in the laboratory until recently. Recently, approaches to new nuclear imaging agents and radiotherapy by loading radioactive isotopes inside liposomes have been actively studied. In this review, we would like to discuss considerations for preparing liposomes using the thin film-hydration method.

Micromachining Thin Metal Film Using Laser Photo Patterning Of Organic Self-Assembled Monolayers (유기 자기조립 단분자막의 레이저 포토 패터닝을 이용한 금속 박막의 미세 형상 가공 기술)

  • 최무진;장원석;신보성;김재구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.219-222
    • /
    • 2003
  • Self-Assembled Monolayers(SAMs) by alkanethiol adsorption to thin metal film are widely being investigated for applications as coating layer for anti-stiction or friction reduction and in fabrication of micro structure of molecular and bio molecular. Recently, there have been many researches on micro patterning using the advantages of very thin thickness and etching resistance in selective etching of thin metal film of Self- Assembled Monolayers. In this report, we present the micromachining thin metal film by Mask-Less laser patterning of alknanethiolate Self-Assembled Monolayers.

  • PDF

Organic-Inorganic Hybrid Thin Film Fabrication as Encapsulation using TMA and Adipoyl Chloride

  • Kim, Se-Jun;Han, Gyu-Seok;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.395-395
    • /
    • 2012
  • We fabricate organic-inorganic hybrid thin film for the purpose of encapsulation by molecular layer deposition (MLD) using Trimethylaluminium (TMA) and Adipoyl Chloride (AC). Ellipsometry was employed to verify self limiting reaction of ALD. Linear relationship between number of cycle and thickness was obtained. We found that desirable organic thin film fabrication is possible by MLD surface reaction in nanoscale. Purging was carried out after dosing of each precursor to form monolayer in each sequence. We also confirmed roughness of the organic thin film by atomic force microscopy. We deposit TMA and AC at $70^{\circ}C$ and that 1.78A root mean square was obtained which indicates that uniform organic thin film was formed. We confirmed precursor's functional group by IR spectrum. We calculated WVTR of organic-inorganic hybrid super-lattice epitaxial layer using Ca test. WVTR indicates superlattice film can be possibly use as encapsulation in flexible devices.

  • PDF

Low Temperature Encapsulation-Layer Fabrication of Organic-Inorganic Hybrid Thin Film by Atomic Layer Deposition-Molecular Layer Deposition

  • Kim, Se-Jun;Kim, Hong-Beom;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.274-274
    • /
    • 2013
  • We fabricate encapsulation-layer of OLED panel from organic-inorganic hybrid thin film by atomic layer deposition (ALD) molecular layer deposition (MLD) using Al2O3 as ALD process and Adipoyl Chloride (AC) and 1,4-Butanediamine as MLD process. Ellipsometry was employed to verify self-limiting reaction of MLD. Linear relationship between number of cycle and thickness was obtained. By such investigation, we found that desirable organic thin film fabrication is possible by MLD surface reaction in monolayer scale. Purging was carried out after dosing of each precursor to eliminate physically adsorbed precursor with surface. We also confirmed roughness of the organic thin film by atomic force microscopy (AFM). We deposit AC and 1,4-Butanediamine at $70^{\circ}C$ and investigated surface roughness as a function of increasing thickness of organic thin film. We confirmed precursor's functional group by IR spectrum. We calculated WVTR of organic-inorganic hybrid super-lattice epitaxial layer using Ca test. WVTR indicates super-lattice film can be possibly use as encapsulation in flexible devices.

  • PDF