DOI QR코드

DOI QR Code

Epigallocatechin 3-gallate Binds to Human Salivary α-Amylase with Complex Hydrogen Bonding Interactions

  • Lee, Jee-Young (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Jeong, Ki-Woong (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Yang-Mee (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
  • Received : 2011.04.27
  • Accepted : 2011.05.16
  • Published : 2011.07.20

Abstract

Amylase is a digestive enzyme that catalyses the starch into sugar. It has been reported that the green tea flavonoid (or polyphenols) (-)-epigallocatechin 3-gallate (EGCG) inhibits human salivary ${\alpha}$-amylase (HSA) and induced anti-nutritional effects. In this study, we performed docking study for seven EGCG-like flavonoids and HSA to understand the interaction mechanism of HSA and EGCG and suggest new possible flavonoid inhibitors of HSA. As a result, EGCG and (-)-epicatechin gallate (ECG) bind to HSA with complex hydrogen bonding interactions. These hydrogen bonding interactions are important for inhibitory activity of EGCG against HSA. We suggested that ECG can be a potent inhibitor of HSA. This study will be helpful to understand the mechanism of inhibition of HSA by EGCG and give insights to develop therapeutic strategies against diabetes.

Keywords

References

  1. Park, K. H.; Kim, T. J.; Cheong, T. K.; Kim, J. W.; Oh, B. H.; Svensson, B. Biochim. Biophys. Acta 2000, 1478, 165. https://doi.org/10.1016/S0167-4838(00)00041-8
  2. Ramasubbu, N.; Paloth, V.; Luo, Y.; Brayer, G. D.; Levine, M. J. Acta. Crystallogr. D Biol. Crystallogr. 1996, 52, 435. https://doi.org/10.1107/S0907444995014119
  3. Christiansen, C.; Abou Hachem, M.; Janecek, S.; Viksø-Nielsen, A.; Blennow, A.; Svensson, B. FEBS J. 2009, 276, 5006. https://doi.org/10.1111/j.1742-4658.2009.07221.x
  4. Sun, H.; Zhao, P.; Ge, X.; Xia, Y.; Hao, Z.; Liu, J.; Peng, M. Appl. Biochem. Biotechnol. 2010, 160, 988. https://doi.org/10.1007/s12010-009-8579-y
  5. Qin, X.; Ren, L.; Yang, X.; Bai, F.; Wang, L.; Geng, P.; Bai, G.; Shen, Y. J. Struct. Biol. 2011, 174, 196. https://doi.org/10.1016/j.jsb.2010.11.020
  6. Chen, D.; Milacic, V.; Chen, M. S.; Wan, S. B.; Lam, W. H.; Huo, C.; Landis-Piwowar, K. R.; Cui, Q. C.; Wali, A.; Chan, T. H.; Dou, Q. P. Histol. Histopathol. 2008, 23, 487.
  7. Katiyar, S. K.; Matsui, M. S.; Elmets, C. A.; Mukhtar, H. Photochem. Photobiol. 1999, 69, 148.
  8. Xu, Z.; Chen, S.; Li, X.; Luo, G.; Li, L.; Le, W. Neurochem. Res. 2006, 31, 1263. https://doi.org/10.1007/s11064-006-9166-z
  9. Qanungo, S.; Das, M.; Haldar, S.; Basu, A. Carcinogenesis 2005, 26, 958.
  10. Sue, Brierley-Hobson. Bioscience Horizons 2008, 1, 9. https://doi.org/10.1093/biohorizons/hzn002
  11. He, Q.; Lv, Y.; Yao, K. Food Chem. 2006, 101, 1178.
  12. Naz, S.; Siddiqi, R.; Dew, T. P.; Williamson, G. J. Agric. Food Chem. 2011, 59, 2734. https://doi.org/10.1021/jf103072z
  13. Lee, J. Y.; Lee, S. A.; Kim, Y. Bull. Korean Chem. Soc. 2007, 28, 941. https://doi.org/10.5012/bkcs.2007.28.6.941
  14. Lee, J. Y.; Baek, S.; Kim, Y. Bull. Korean Chem. Soc. 2007, 28, 379. https://doi.org/10.5012/bkcs.2007.28.3.379
  15. Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. J. Computational Chemistry 1998, 19, 1639. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  16. Shiota, S.; Shimizu, M.; Mizushima, T.; Ito, H.; Hatano, T.;Yoshida, T.; Tsuchiya, T. Biol. Pharm. Bull. 1999, 22, 1388. https://doi.org/10.1248/bpb.22.1388
  17. Ikeda, I.; Kobayashi, M.; Hamada, T.; Tsuda, K.; Goto, H.; Imaizumi, K.; Nozawa, A.; Sugimoto, A.; Kakuda, T. J. Agric. Food Chem. 2003, 51, 7303. https://doi.org/10.1021/jf034728l
  18. Khan, N.; Afaq, F.; Saleem, M.; Ahmad, N.; Mukhtar, H. Cancer Res. 2006, 66, 2500. https://doi.org/10.1158/0008-5472.CAN-05-3636
  19. Chung, J. Y.; Huang, C.; Meng, X.; Dong, Z.; Yang, C. S. Cancer Res. 1999, 59, 4610.
  20. Krammer, A.; Kirchhoff, P. D.; Venkatachalam, X. J. C. M.; Waldman, M. J. Mol. Graph. Model. 2005, 23, 395. https://doi.org/10.1016/j.jmgm.2004.11.007

Cited by

  1. Effects of Oolong Tea Polyphenols, EGCG, and EGCG3″Me on Pancreatic α-Amylase Activity in Vitro vol.62, pp.39, 2014, https://doi.org/10.1021/jf5032907
  2. Investigate the Binding of Catechins to Trypsin Using Docking and Molecular Dynamics Simulation vol.10, pp.5, 2015, https://doi.org/10.1371/journal.pone.0125848
  3. Inhibition of Light Chain 6aJL2-R24G Amyloid Fiber Formation Associated with Light Chain Amyloidosis vol.54, pp.32, 2015, https://doi.org/10.1021/acs.biochem.5b00288
  4. Tea polyphenols: Enzyme inhibition effect and starch digestibility vol.69, pp.7-8, 2016, https://doi.org/10.1002/star.201600195
  5. Model vol.36, pp.7, 2017, https://doi.org/10.1080/07315724.2017.1333930
  6. Additional benefit of higher dose green tea in lowering postprandial blood glucose vol.24, pp.2, 2015, https://doi.org/10.13181/mji.v24i2.1167
  7. Is There Consistency between the Binding Affinity and Inhibitory Potential of Natural Polyphenols as α-amylase Inhibitors? vol.56, pp.10, 2011, https://doi.org/10.1080/10408398.2013.793652
  8. An assessment of the interaction for three Chrysanthemum indicum flavonoids and α‐amylase by surface plasmon resonance vol.8, pp.1, 2011, https://doi.org/10.1002/fsn3.1349
  9. Inhibition of starch digestion by flavonoids: Role of flavonoid-amylase binding kinetics vol.341, pp.2, 2011, https://doi.org/10.1016/j.foodchem.2020.128256
  10. Maltoheptaoside hydrolysis with chromatographic detection and starch hydrolysis with reducing sugar analysis: Comparison of assays allows assessment of the roles of direct α-amylase inhibition a vol.343, pp.None, 2011, https://doi.org/10.1016/j.foodchem.2020.128423