DOI QR코드

DOI QR Code

Selective DNA Adsorption on Layered Double Hydroxide Nanoparticles

  • Kim, Kyoung-Min (Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University) ;
  • Park, Chung-Berm (National Institute of Horticultural & Herbal Science (NIHHS) of RDA) ;
  • Choi, Ae-Jin (National Institute of Horticultural & Herbal Science (NIHHS) of RDA) ;
  • Choy, Jin-Ho (Center for Intelligent Nano Bio Materials (CINBM), Department of Bio Inspired Science and Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Oh, Jae-Min (Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University)
  • Received : 2011.04.06
  • Accepted : 2011.05.13
  • Published : 2011.07.20

Abstract

We investigated the selective deoxyribonucleic acid (DNA) adsorption on layered double hydroxide (LDH) nanoparticles via studying the interaction between positively charged LDH nanoparticle as adsorbent and negatively charged adsorbates such as methyl orange (MO), fluorescein (FL), and DNA strands. The size controlled LDH $(Mg_{0.78}Al_{0.22}(OH)_2(CO_3)_{0.11}{\cdot}mH_2O)$ was prepared by conventional coprecipitation method, followed by the hydrothermal treatment. According to the adsorption isotherms, the adsorbed amounts of MO and FL were similar, however, that of DNA were much larger. The adsorption behaviors were well fitted to Freundlich adsorption model. The concentration dependent adsorption behavior on LDH surface was described in order to verify the selective DNA separation ability. The result showed that the LDH has advantages in selective adsorption of DNA competing with single molecular anions.

Keywords

References

  1. Choy, J.-H.; Oh, J.-M.; Park, M.; Sohn, K.-M.; Kim, J.-W. Adv. Mater. 2004, 16, 1181. https://doi.org/10.1002/adma.200400027
  2. Lee, J. Y.; Kim, B.-K.; Seongpil, H.; Younghoon, L.; Juhyoun, K. Bull. Korean Chem. Soc. 2010, 31, 3099. https://doi.org/10.5012/bkcs.2010.31.11.3099
  3. Park, D.-H.; Kim, J.-E.; Oh, J.-M.; Shul, Y.-G.; Choy, J.-H. J. Am. Chem. Soc. 2010, 132, 16735. https://doi.org/10.1021/ja105809e
  4. Jo, H.; Min, K.; Song, K.-m.; Ku, J. K.; Han, M. S.; Ban, C. Bull. Korean Chem. Soc. 2011, 32, 247. https://doi.org/10.5012/bkcs.2011.32.1.247
  5. Oh, J.-M.; Park, D.-H.; Choy, J.-H. Chem. Soc. Rev. 2011, 40, 583. https://doi.org/10.1039/c0cs00051e
  6. Choi, H. K.; Chang, J. H.; Ko, I. H.; Lee, J. H.; Jeong, B. Y.; Kim, J. H.; Kim, J. B. J Solid State Chem. 2011, 184, 805. https://doi.org/10.1016/j.jssc.2011.02.005
  7. Lee, J. H.; Rhee, S. W.; Jung, D.-Y. Bull. Korean Chem. Soc. 2005, 26, 248. https://doi.org/10.5012/bkcs.2005.26.2.248
  8. Choy, J.-H.; Choi, S.-J.; Oh, J.-M.; Park, T. Appl. Clay Sci. 2007, 36, 122. https://doi.org/10.1016/j.clay.2006.07.007
  9. Pavan, P. C.; Crepaldi, E. L.; Valim, J. B. J. Colloid Interface Sci. 2000, 229, 346. https://doi.org/10.1006/jcis.2000.7031
  10. Choi, S.-J.; Oh, J.-M.; Choy, J.-H. J. Inorg. Biochem. 2009, 103, 463. https://doi.org/10.1016/j.jinorgbio.2008.12.017
  11. Cavani, F.; Trifirò, F.; Vaccari, A. Catal. Today 1991, 11, 173. https://doi.org/10.1016/0920-5861(91)80068-K
  12. Goh, K.-H.; Lim, T.-T.; Dong, Z. Water Res. 2008, 42, 1343. https://doi.org/10.1016/j.watres.2007.10.043
  13. Oh, J.-M.; Biswick, T. T.; Choy, J.-H. J. Mater. Chem. 2009, 19, 2553. https://doi.org/10.1039/b819094a
  14. Sambrook, J.; Russell, D. W. Molecular Cloning: A Laboratory Manual, 3ed.; Cold spring harbor laboratory press: New York, 2001.
  15. Costantino, U.; Coletti, N.; Nocchetti, M.; Aloisi, G. G.; Elisei, F.; Latterini, L. Langmuir 2000, 16, 10351. https://doi.org/10.1021/la001096d
  16. Oh, J.-M.; Hwang, S.-H.; Choy, J.-H. Solid State Ionics 2002, 151, 285. https://doi.org/10.1016/S0167-2738(02)00725-7
  17. Shi, W.; Wei, M.; Jin, L.; Li, C. J. Mol. Catal. B-Enzym. 2007, 47, 58. https://doi.org/10.1016/j.molcatb.2007.04.001
  18. Park, D.-H.; Oh, J.-M.; Shul, Y.-G.; Choy, J.-H. J. Nanosci. Nanotech. 2008, 8, 5014. https://doi.org/10.1166/jnn.2008.1368

Cited by

  1. Interlayer Structure of Bioactive Molecule, 2-Aminoethanesulfonate, Intercalated into Calcium-Containing Layered Double Hydroxides vol.2012, pp.1687-4129, 2012, https://doi.org/10.1155/2012/987938
  2. Encapsulation of 2,4-Dihydroxybenzophenone into Dodecylbenzenesulfonate Modified Layered Double Hydroxide for UV Absorption Properties vol.35, pp.2, 2014, https://doi.org/10.5012/bkcs.2014.35.2.392
  3. Intercalative Ion-Exchange Route to Amino Acid Layered Double Hydroxide Nanohybrids and Their Sorption Properties vol.2015, pp.6, 2015, https://doi.org/10.1002/ejic.201403115
  4. Influence of anionic surface modifiers on the thermal stability and mechanical properties of layered double hydroxide/polypropylene nanocomposites vol.3, pp.45, 2015, https://doi.org/10.1039/C5TA06271C
  5. Layered Double Hydroxide Nanomaterials Encapsulating Angelica gigas Nakai Extract for Potential Anticancer Nanomedicine vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00723
  6. Two-dimensional ultrathin nanosheets of Ni-In-layered double hydroxides prepared in water: enhanced performance for DNA adsorption vol.4, pp.57, 2014, https://doi.org/10.1039/c3ra47728b
  7. Incorporation of Glycine max Merrill Extract into Layered Double Hydroxide through Ion-Exchange and Reconstruction vol.9, pp.9, 2011, https://doi.org/10.3390/nano9091262
  8. SUSTAINED ANTIBACTERIAL EFFECT OF LEVOFLOXACIN DRUG IN A POLYMER MATRIX BY HYBRIDIZATION WITH A LAYERED DOUBLE HYDROXIDE vol.69, pp.4, 2011, https://doi.org/10.1007/s42860-021-00128-7