DOI QR코드

DOI QR Code

Mapping Biodiversity throughoptimized selection of input variables in decision tree models

의사결정나무 변수 선정 방법을 적용한 대축적 생물다양성 지도 구축

  • Kim, Do Yeon (School of Civil and Environmental Engineering, Yonsei University) ;
  • Heo, Joon (School of Civil and Environmental Engineering, Yonsei University) ;
  • Kim, Chang Jae (School of Civil and Environmental Engineering, Yonsei University)
  • 김도연 (연세대학교 사회환경시스템공학부) ;
  • 허준 (연세대학교 사회환경시스템공학부) ;
  • 김창재 (연세대학교 사회환경시스템공학부)
  • Received : 2011.07.14
  • Accepted : 2011.09.03
  • Published : 2011.10.31

Abstract

In the face of accelerating biodiversity loss and its significance in our coexistence with nature, biodiversity is becoming more crucial in sustainable development perspective. To estimate biodiversity in the future which provides valuable information for decision making system especially in the national level, a quantitative approach must be studied forehand as a baseline of the present status. In this study, we developed a large-scale map of Plant Species Richness (PSR, typical indicator of biodiversity) for Young-dong and Pyung-chang provinces. Due to the accessibility of appropriate data and advance of modelling techniques, reduction of variables without deteriorating the predictive power is considered by applying Genetic algorithm. In addition, a number of Correctly Classified Instances (CCI) with 10-fold cross validation which indicates the predictive power, was carried out for evaluation. This study, as a fundamental baseline, will be beneficial in future land work as well as ecosystem restoration business or other relevant decision making agenda.

Keywords

References

  1. 통계청, 2009. 인구주택총조사. http://kosis.kr/
  2. Andrews, P. & O'Brien, E.M. (2000) Climate, vegetation, and predictable gradients in mammal species richness in southern Africa, Journal of Zoology, 251, 205-231. https://doi.org/10.1111/j.1469-7998.2000.tb00605.x
  3. Auger, P., Charles, S., Viala, M., Poggiale, J., c2000. Aggregation and emergence in ecological modelling: intergration of ecological levels. Ecol. Model. 127, 11-20. https://doi.org/10.1016/S0304-3800(99)00201-X
  4. Beaumont, L. J., Gallagher, R. V., Thuiller, W., Downey, P. O., Leishman, M. R. and Hughes L. 2009. Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Diversity and Distribution, 15, 409-420. https://doi.org/10.1111/j.1472-4642.2008.00547.x
  5. Boone, R.B. & Krohn, W.B. (2000) Relationship between avian range limits and plant transition zones in Maine, Journal of Biogeography, 27, 471-482. https://doi.org/10.1046/j.1365-2699.2000.00420.x
  6. Currie, D.J. (1991) Energy and large-scale patterns of animal and plant species richness. American Natualist, 137, 27-49. https://doi.org/10.1086/285144
  7. D'heygere, T., Goethals, P. L. M., De Pauw, N. 2003. Use of genetic algorithms to select input variables in decision tree models for the prediction of benthic macroinvertebrates. Ecological Modelling. 160, 291-300. https://doi.org/10.1016/S0304-3800(02)00260-0
  8. Echeverria, C., Coomes, D. A., Hall, M. and Newton, A., 2008. Spatially Explicit Models to Analyze Forest Loss and Fragmentation Between 1976 and 2020 in Southern Chile. Ecological Modelling, 212, pp. 439-449. https://doi.org/10.1016/j.ecolmodel.2007.10.045
  9. European Communities, 2008, TEEB(the Economices of Ecosystem and Biodiversity) an interim Report.
  10. Fielding, A.H., Bell, J.F., 1997. A review method for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38-49. https://doi.org/10.1017/S0376892997000088
  11. Flesch, A. D. & Hahn, L. A. 2005. Distribution of birds and plants at the western and southern edges of the Madrean Sky Islands in Sonora, Mexico. U S Forest Service Rocky Mountain Research Station Proceedings RMRS-P, 36, 80-87.
  12. Franklin, J. 2009. Mapping Species Distribution. Cambridge, p. 320.
  13. Garzon-Orduna, I., Miranda-Esquivel, D., Donato, M. 2008. Parsimony analysis of endemicity describes but does not explain: an illustrated critique. Journal of Biogeography. 35, 903-913. https://doi.org/10.1111/j.1365-2699.2007.01842.x
  14. Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Pulishing Company, Reading, MA, p. 412.
  15. Jenks, G. F., 1967. The Data Model Concept in Statistical Mapping. International Yearbook of Cartography. 7. pp. 186-190.
  16. Jha, C. S., Goparaju, L., Tripathi, A., Gharai, B., Raghubanshi, A. S., Singh, J. S. 2005. Forest fragmentation and its impact on species diversity: an analysis using remote sensing and GIS. Biodiversity and Conservation. 14, 1681-1698. https://doi.org/10.1007/s10531-004-0695-y
  17. John, G.H., 1997. Enhancement to the data mining process. PHD Dissertation, Computer Science Department, Standford University.
  18. Jongman, R.H.G., Ter Braak, C.J.F., Van tongeren, O.F.R., 1995. Data Analysis in Community and Landscape Ecology, 2nd ed.. Cambridge University Press, Cambridge, p. 299.
  19. Kier, G., Kreft, H., Lee, T. M., Jetz, W., Ibisch, P. L., Nowicki, C., Mutke, J. & Barthlott, W. 2009. PNAS. Vol. 106. pp. 9322- 9327. https://doi.org/10.1073/pnas.0810306106
  20. Knapp, A. K., et al. 2002. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science 298. pp. 2202-2205. https://doi.org/10.1126/science.1076347
  21. Meentemeyer, R. K., Moody, A., & Franklin, J. 2001. Landscape-scale patterns of shrubspecies abundance in California chaparral: the role of topographically mediated resource gradient. Plant Ecology, 156, 19-41. https://doi.org/10.1023/A:1011944805738
  22. Michaelsen, J., Davis, F. W., & Borchert, M. 1987, Anon-parametric method for analyzing hierarchical relationships in ecological data. Coenoses, 2, 39-48.
  23. Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. & Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature. Vol. 403. pp. 853-858. https://doi.org/10.1038/35002501
  24. Nogue, S., Rull, V., Vegas-Vilarrubia, T. 2009. Modeling biodiversity loss by global warming on Pantepui, northern South America: projected upward migration and potential habitat loss. Climate Change. 94, 77-85. https://doi.org/10.1007/s10584-009-9554-x
  25. Phillips, S. J., and Dudik, M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography. 31, 161-175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
  26. Quinlan, J.R., 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco.
  27. Witten, I. H. & Frank, E. 2000. Data Mining, Morgan Kaufmann, p. 525
  28. The University of Waikato, New Zealand, http://www.cs.waikato.ac.nz/-ml/index.html