DOI QR코드

DOI QR Code

Changes of the Forest Types by Climate Changes using Satellite imagery and Forest Statistical Data: A case in the Chungnam Coastal Ares, Korea

위성영상과 임상통계를 이용한 충남해안지역의 기후변화에 따른 임상 변화

  • Kim, Chansoo (Department of Applied Statistics, Kongju National University) ;
  • Park, Ji-Hoon (Department of Geography Education, Kongju National University) ;
  • Jang, Dong-Ho (Department of Geography, Kongju National University)
  • Received : 2011.06.02
  • Accepted : 2011.08.11
  • Published : 2011.08.31

Abstract

This study analyzes the changes in the surface area of each forest cover, based on temperature data analysis and satellite imagery as the basic methods for the impact assessment of climate change on regional units. Furthermore, future changes in the forest cover are predicted using the double exponential smoothing method. The results of the study have shown an overall increase in annual mean temperature in the studied region since 1990, and an especially increased rate in winter and autumn compared to other seasons. The multi-temporal analysis of the changes in the forest cover using satellite images showed a large decrease of coniferous forests, and a continual increase in deciduous forests and mixed forests. Such changes are attributed to the increase in annual mean temperature of the studied regions. The analysis of changes in the surface area of each forest cover using the statistical data displayed similar tendencies as that of the forest cover categorizing results from the satellite images. Accordingly, rapid changes in forest cover following the increase of temperature in the studied regions could be expected. The results of the study of the forest cover surface using the double exponential smoothing method predict a continual decrease in coniferous forests until 2050. On the contrary, deciduous forests and mixed forests are predicted to show continually increasing tendencies. Deciduous forests have been predicted to increase the most in the future. With these results, the data on forest cover can be usefully applied as the main index for climate change. Further qualitative results are expected to be deduced from these data in the future, compared to the analyses of the relationship between tree species of forest and climate factors.

Keywords

References

  1. 공우석, 2001, 대나무의 시.공간적 분포역 변화, 대한지리학회지, 36(4), 444-457.
  2. 구경아, 박원규, 공우석, 2001, 한라산 구상나무의 연륜연대학적 연구-기후변화에 따른 생장 변동 분석-, 한국생태학회지, 24(5), 281-288.
  3. 군산시, 당진군, 보령시, 서산시, 서천군, 홍성군, 태안군, 1981-2010, 시.군 통계연보.
  4. 기상청, 2006, 기후변화 영향평가 및 적응방안에 관한 연구, 기상지진개발사업.
  5. 김인환, 한경수, 김상일, 2010, 1KM NDVI 10년 자료를 이용한 한반도 식생의 경년변동 분석, 대한원격탐사학회지, 27(1), 17-24. https://doi.org/10.7780/kjrs.2011.27.1.017
  6. 김종원, 신준환, 임종환, 1995, 기후변화가 한반도에 미치는 영향과 지구 환경관련 대책 연구 (II), 한국과학기술연구원.
  7. 임종환, 신준환, 2000, 지구온난화가 산림생태계에 미치는 영향, 자연보존, 111, 19-25.
  8. 이동근, 김재욱, 2007, 한반도지역의 기후변화에 의한 고산.아고산 식생 취약성 평가, 한국환경복원녹화기술학회지, 10(6), 110-119.
  9. 이동근, 김재욱, 박찬, 2010, 토지피복 변화를 반영 한 미래의 산림식생 분포 예측에 관한 연구, 환경영향평가, 19(2), 117-125.
  10. 이승호, 이경미, 2003, 기온변화에 따른 벚꽃 개화 시기의 변화 경향, 환경영향평가, 12(1), 45-54.
  11. 장동호, 권원태, 2007, 위성영상을 이용한 남서해 안지역의 기온변화에 따른 식생분석, 한국지형학회지, 14(1), 67-75.
  12. 장동호, 김장수, 2009, 충남 연안지역에서 기후변화에 의한 해수면 상승에 따른 취약성 평가, 한국지형학회지, 16(2), 1-13.
  13. 정희철, 전성우, 이동근, 송강양, 2003, 삼림의 이동속도를 고려한 한반도 자연 식생의 기후 변화 적응성 평가, 환경영향평가, 12(5), 383-393.
  14. 하림, 신형진, 김성준, 2007, 위성영상을 이용한 기후변화에 따른 미래 식생정보 예측 기법 제안, 한국지리정보학회지, 10(3), 58-69.
  15. 하림, 신형진, 박근애, 김성준, 2007, 리모트센싱 응용: NOAA AVHRR 위성영상과 기후변화 시나리오에 의한 기상자료를 이용한 미래 식생정보 예측 기법 개발, 한국지형공간정보학회지, 춘계학술대회 발표논문, 162-168.
  16. 한경수, 김영섭, 2004, SPOT/VEGETATION 영상을 이용한 눈과 구름의 분류 알고리즘, 대한원격탐사학회지, 20(4), 235-244. https://doi.org/10.7780/kjrs.2004.20.4.235
  17. 한국환경정책.평가연구원, 2002, 기후변화에 따른 생태계 영향평가 및 대응방안 연구(III).
  18. 허인혜, 권원태, 전영문, 이승호, 2006, 우리나라에서 기온 상승이 식생분포에 미치는 영향, 한국환경영향평가학회지, 15(1), 67-78.
  19. Augustin, N. H., Cummins, R. P., and French, D. D., 2001, Exploring spatial vegetation dynamics using logistic regression and a multinomial logit model, Journal of Applied Ecology, 38(5), 991-1006.
  20. Austin, M., 2007, Species distribution models and ecological theory: A critical assessment and some possible new approaches, Ecological Modelling, 200(1-2), 1-19. https://doi.org/10.1016/j.ecolmodel.2006.07.005
  21. Calef, M. P., McGuire, A. D., Epstein, H. E., Rupp, T. S., and Shugart, H. H., 2005, Analysis of vegetation distribution in Interior Alaska and sensitivity to climate change using a logistic regression approach, Journal of Biogeography, 32(5), 863-878. https://doi.org/10.1111/j.1365-2699.2004.01185.x
  22. Dionysios, M. and Serafeim, P., 2010, Deforestation processes in Greece: A spatial analysis by using an ordinal regression model, Forest Policy and Economics, 12(6), 457-472. https://doi.org/10.1016/j.forpol.2010.02.011
  23. Dobrowski, S. Z., Greenberg, J. A., Ramirez, C. M., and Ustin S. L., 2006, Improving image derived vegetation maps with regression based distribution modeling, Ecological Modelling, 192(1-2), 126-142. https://doi.org/10.1016/j.ecolmodel.2005.09.006
  24. Eidenshink, J. C., 1992, The 1990 Conterminous U.S. AVHRR Data Set, Photogrammetric Engineering and Remote Sensing, 58(6), 809-813.
  25. Feddema, J. J., Oleson, K. W., Bonan, G. B., Meams, L. O., Buja, L. E., Meehl, G. A., and Washington, W. M., 2005, The importance of land-cover change in simulation future climates, Science, 310(5754), 1674-1678. https://doi.org/10.1126/science.1118160
  26. IPCC, 2007, Climate Change 2007: The Physical Science Basis.
  27. Iverson, L. R., Prasad, A. M., and Schwartz, M. W., 2005, Predicting potential changes in suitable habitat and distribution by 2100 for tree species of the Eastern United States, Journal of Agricultural Meteorology, 61(1), 29-37. https://doi.org/10.2480/agrmet.61.29
  28. Peter, T. W. and Philip, A. T., 2010, Multisensor data fusion for estimating forest species composition and abundance in northern Minnesota, Remote Sensing of Environment, 115(2), 671-691.
  29. Peterson, L. K., Bergen, K. M., Brown, D. G., Vashchuk, L., and Blam, Y., 2009, Forested land-cover patterns and trends over changing forest management eras in the Siberian Baikal region, Forest Ecology and Management, 257(3), 911- 922. https://doi.org/10.1016/j.foreco.2008.10.037
  30. Prasad, A. M., Iverson, L. R., and Liaw, A., 2006, Newer classification and regression tree techniques, Ecosystems, 9(2), 181- 199. https://doi.org/10.1007/s10021-005-0054-1
  31. Woodward, F. I., 1987, Climate and Plant Distribution, Cambridge Univ., Press, Cambridge.

Cited by

  1. Radial growth response of Pinus densiflora and Quercus spp. to topographic and climatic factors in South Korea vol.6, pp.5, 2011, https://doi.org/10.1093/jpe/rtt001