DOI QR코드

DOI QR Code

An Environmental Impact Assessment System for Microscale Winds Based on a Computational Fluid Dynamics Model

전산유체역학모형에 근거한 미기상 바람환경 영향평가 시스템

  • Kim, Kyu Rang (Applied Meteorology Research Lab.,, National Institute of Meteorological Research) ;
  • Koo, Hae Jung (Applied Meteorology Research Lab.,, National Institute of Meteorological Research) ;
  • Kwon, Tae Heon (Applied Meteorology Research Lab.,, National Institute of Meteorological Research) ;
  • Choi, Young-Jean (Applied Meteorology Research Lab.,, National Institute of Meteorological Research)
  • 김규랑 (국립기상연구소 응용기상연구과) ;
  • 구해정 (국립기상연구소 응용기상연구과) ;
  • 권태헌 (국립기상연구소 응용기상연구과) ;
  • 최영진 (국립기상연구소 응용기상연구과)
  • Received : 2011.03.08
  • Accepted : 2011.06.03
  • Published : 2011.06.30

Abstract

Urban environmental problem became one of major issues during its urbanization processes. Environmental impacts are assessed during recent urban planning and development. Though the environmental impact assessment considers meteorological impact as a minor component, changes in wind environment during development can largely affect the distribution pattern of air temperature, humidity, and pollutants. Impact assessment of local wind is, therefore, a major element for impact assessment prior to any other meteorological impact assessment. Computational Fluid Dynamics (CFD) models are utilized in various fields such as in wind field assessment during a construction of a new building and in post analysis of a fire event over a mountain. CFD models require specially formatted input data and produce specific output files, which can be analyzed using special programs. CFD's huge requirement in computing power is another hurdle in practical use. In this study, a CFD model and related software processors were automated and integrated as a microscale wind environmental impact assessment system. A supercomputer system was used to reduce the running hours of the model. Input data processor ingests development plans in CAD or GIS formatted files and produces input data files for the CFD model. Output data processor produces various analytical graphs upon user requests. The system was used in assessing the impacts of a new building near an observatory on wind fields and showed the changes by the construction visually and quantitatively. The microscale wind assessment system will evolve, of course, incorporating new improvement of the models and processors. Nevertheless the framework suggested here can be utilized as a basic system for the assessment.

Keywords

References

  1. 구해정, 최영진, 김규랑, 변재영, 2009, 계산유체역학모형 CFD_NIMR_SNU를 이용한 국지적으로 가열된 산악지역의 상세 바람 흐름 모사 - 화왕산 산불 사례, 한국농림기상학회지, 11, 192-205.
  2. 국립기상연구소, 2005, 도시 대기특성 예측 및 응용기술 개발(III), 국립기상연구소.
  3. 국립기상연구소, 2006, 국지기상 특성진단 및 기상환경영향평가 기술개발 연구(I), 국립기상연구소.
  4. 국립기상연구소, 2007, 국지기상 특성진단 및 기상 환경영향평가 기술개발 연구(II), 국립기상연구소.
  5. 국립기상연구소, 2008, 국지기상 특성진단 및 기상 환경영향평가 기술개발 연구(III), 국립기상연구소.
  6. 국립기상연구소, 2009, 국지기상 특성진단 및 기상 환경영향평가 기술개발 연구(IV), 국립기상연구소.
  7. 국토지리정보원, 2006, 공공측량성과 세계측지계 전환 기술지침서, 국토지리정보원
  8. 도화종합기술공사, 삼안, 건일엔지니어링, 2010, 보현산다목적댐 건설사업 환경영향평가서, 국토해양부.
  9. 금호엔지니어링, 2004, 은평 뉴타운 도시개발사업 환경영향평가서, 서울시.
  10. 기상청, 2007, 웹기반 기상분석시스템 개발(II), 기상청.
  11. 김운수, 김학열, 엄정희, 조명희, 오성남, 2001, 기후특성을 고려한 도시계획제도의 도입과 적용 가능성에 관한 연구, 서울시정개발연구원, 1-22.
  12. 김충식, 2006, GIS와 CAD기술을 접목한 도시경관 시뮬레이터의 개발, 대한건축학회논문집.
  13. 롯데물산, 롯데쇼핑, 호텔롯데, 2009, 제2롯데월드 건축허가 변경에 따른 환경영향평가서, 서울시.
  14. 이현영, 1989, 원격탐사 기법에 의한 도시열섬 연구. 지리학, 40, 1-13.
  15. 조명희, 2006, ASTER 위성영상과 GIS를 이용한 청계천 복원 전의 도시 지표 열 환경 특성, 한국기상학회 봄철 학술대회 논문집, 260-261.
  16. 케이웨더, 2003, 고해상도 미기상 모델을 활용한 기상영향평가 기술 개발, 케이웨더.
  17. 환경부, 2008, 환경영향평가법, 법제처.
  18. Baik, J.-J. and J.-J. Kim, 2002, On the escape of pollutants from urban street canyons, Atmospheric Environment, 36, 527-536. https://doi.org/10.1016/S1352-2310(01)00438-1
  19. Baik, J.-J., Y.-S. Kang, and J.-J. Kim, 2007, Modeling reactive pollutant dispersion in an urban street canyon, Atmospheric Environment, 41, 934-949. https://doi.org/10.1016/j.atmosenv.2006.09.018
  20. Bruse, M. and H. Fleer, 1998, Simulating surface -plant-air interactions inside urban environments with a three dimensional numerical model, Environmental Modelling and Software, 13, 373-384. https://doi.org/10.1016/S1364-8152(98)00042-5
  21. Kim, J.-J., and J.-J. Baik, 2004: A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k-e turbulence model, Atmospheric Environment, 38, 3039-3048. https://doi.org/10.1016/j.atmosenv.2004.02.047
  22. Koo, H.-J., K. R. Kim, Y.-J. Choi, T. H. Kwon, Y.-H. Kim, and C.-Y. Choi, 2009, Impact assessment on local meteorology due to the land use changes during urban development in Seoul, Proceedings of the 88th AMS Annual Meeting
  23. Mitchell, J. M. Jr., 1953, On the causes of instrumentally observed secular temperature trends. Journal of Meteorology, 10, 244-261. https://doi.org/10.1175/1520-0469(1953)010<0244:OTCOIO>2.0.CO;2
  24. Oke, T. R., 1987, Boundary Layer Climates, 2nd ed. Routledge, 435pp.
  25. Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New Yrok, 126-131.
  26. Sievers, U., W. G. Zdunkowski, 1986, A microscale urban climate model, Beitr. Phys. Atmos., 59, 13-40.