The Identification of Stilbene Compounds and the Change of Their Contents in UV-irradiated Grapevine Leaves

자외선 조사 포도 잎에서 Stilbene 화합물의 동정과 함량의 변화

  • 최성진 (대구가톨릭대학교 생명공학과)
  • Received : 2011.05.08
  • Accepted : 2011.06.09
  • Published : 2011.08.30

Abstract

Stilbenes are polyphenolic natural products, which have antioxidative and antifungal activities. In some plants, including grapevine, the stilbene compounds, as resveratrol derivatives, exist in very diverse forms. Experiments to identify the individual stilbene compounds were carried out first to quantify them in UV-irradiated grapevine leaves. For this, stilbene glycosides were extracted from grapevine leaves which irradiated intensively with UV light. The glycoside samples were hydrolyzed by ${\beta}$-glucosidase, before analyzed by HPLC-mass spectrometer at each m/z corresponding to the mass of specific stilbenes. As results, in chromatograms, the enzymatic hydrolysis resulted in decrease and increase of the peaks expected for glycosides and aglycones, respectively. The samples were also exposed to sunlight in order to photo-isomerize the stilbene compounds. The light exposure resulted in disappearance and appearance of peaks expected for trans- and cis-isomers of stilbenes, respectively. Such a change of the peaks in chromatograms provided information needed for the inference to peak components. In this way, it was possible to identify 16 kinds of stilbene compounds from grapevine leaves. The identified stilbenes were quantified from grapevine leaves irradiated mildly by UV light. The UV-irradiation increased markedly in the content of stilbene compounds, especially trans-resveratrol by several hundredfold. In addition, piceatannol, which is a mere minor component of stilbenes in control leaves and a more active radical scavenger than resveratrol, was also increased by several tenfold by the treatment. The increase in stilbene contents as influenced by UV irradiation seems to be one of the stress coping responses of grapevine as a hormesis phenomenon.

Stilbene 화합물은 항산화 및 항균 활성을 가지는 폴리페놀계의 천연물이다. 포도를 포함하는 몇몇 종류의 식물에서 stilbene 화합물은 resveratrol의 유도체로서 매우 다양한 형태로 존재한다. 자외선 조사 포도 잎에서 stibene 화합물을 정량 분석하기에 앞서, 먼저 각 stilbene 화합물을 동정하기 위한 실험을 수행하였다. 이를 위하여, 자외선을 심하게 조사한 잎에서 stilbene 배당체를 추출하였다. 추출한 배당체 시료는 ${\beta}$-glucosidase를 이용하여 가수분해한 후, 특정 stilbene 화합물의 질량에 해당하는 m/z에서 HPLC-mass spectrometer를 이용하여 분석하였다. 효소적 가수분해에 의해 chromatogram상에는 glycoside에 해당할 것으로 예상되는 peak의 감소와 aglycone에 해당할 것으로 예상되는 peak 증가가 나타났다. 또한 stilbene 화합물의 광 이성질화를 유도하기 위하여 시료를 일광에 노출하였으며, 광 노출에 의해 trans-isomer에 해당할 것으로 예상되는 peak의 소멸과 cis-isomer에 해당할 것으로 예상되는 peak의 생성이 나타났다. Chromatogram상의 peak의 이러한 증감으로부터 각 peak의 성분을 유추하였다. 이러한 방법으로 포도 잎에서 16종의 stilbene 화합물을 동정할 수 있었으며 자외선을 조사한 포도 잎에서 동정된 화합물에 대한 정량적 분석을 수행하였다. 자외선 조사는 포도 잎에서 총 stilbene 함량의 상당한 증가를 가져왔는데 특히 trans-resveratrol은 수백 배 증가하였다. 또한, resveratrol보다 더 강한 radical 소거 활성을 가지지만 무처리 잎에서는 단지 미량으로만 존재하는 piceatannol의 함량 역시 수십배 증가하였다. 자외선 조사에 의한 이러한 stilbene 함량의 증가는 hormesis 현상으로서 포도의 스트레스 대응 반응의 하나로 생각된다.

Keywords

References

  1. Baur, J.A. and D.A. Sinclair. 2006. Therapeutic potential of resveratrol: The in vivo evidence. Nat. Rev. Drug Discov. 5:493-506. https://doi.org/10.1038/nrd2060
  2. Chong, J., A. Poutaraud, and P. Hugueney. 2009. Metabolism and roles of stilbenes in plants. Plant Sci. 177:143-155. https://doi.org/10.1016/j.plantsci.2009.05.012
  3. Dai, G.H., C. Andray, L. Mondolot-Cosson, and D. Boubals. 1995. Histochemical studies on the interaction between three species of grapevine, Vitis vinifera, V. rupestris, and V. rotundifolia and downy mildew fungus, Plasmopara viticola. Physiol. Mol. Plant Pathol. 46:177-188. https://doi.org/10.1006/pmpp.1995.1014
  4. Fabris, S., F. Momo, G. Ravagnan, and R. Stevanato. 2008. Antioxidant properties of resveratrol and piceid on lipid peroxidation in micelles and monolamellar liposomes. Biophys. Chem. 135:76-83. https://doi.org/10.1016/j.bpc.2008.03.005
  5. Gehlert, R., A. Schoppner, and H. Kindl. 1990. Stilbene synthase from seedlings of Pinus sylvestris: Purification and induction in response to fungal infection. Mol. Plant-Microbe Interact 3:444-449. https://doi.org/10.1094/MPMI-3-444
  6. Gonzalez-Barrio, R., M.L. Vidal-Guevara, F.A. Tomas-Barberan, and J.C. Espin. 2009. Preparation of a resveratrol-enriched grape juice based on ultraviolet C-treated berries. Innovative Food Sci. Emerg. Technol. 10:374-382. https://doi.org/10.1016/j.ifset.2009.01.004
  7. Guerrero, R.F., B. Puertas, M.I. Fernandez, Z. Pineiro, and E. Cantos-Villar. 2010. UVC-treated skin-contact effect on both white wine quality and resveratrol content. Food Res. Intl. 43:2179-2185. https://doi.org/10.1016/j.foodres.2010.07.023
  8. Hoos, G. and R.J. Blaich. 1990. Influence of resverastrol on germination of conidia and mycelial growth of Botrytis cinerea and Phomopsis viticola. J. Phytopathol. 129:102-110. https://doi.org/10.1111/j.1439-0434.1990.tb04293.x
  9. Jang, M., L. Cai, G. Udeani, K. Slowing, C. Thomas, C. Beecher, H. Fong, N. Farnworth, A. Kinghorn, R. Mehta, R. Moon, and J. Pezzuto. 1997. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218-220. https://doi.org/10.1126/science.275.5297.218
  10. Jansen, M.A.K., K. Hectors, N.M. O'Brien, Y. Guisez, and G. Potters. 2008. Plant stress and human health: Do human consumers benefit from UV-B acclimated crops? Plant Sci. 175:449-458. https://doi.org/10.1016/j.plantsci.2008.04.010
  11. Lancake, P. and R.J. Pryce. 1977. The production of resveratrol and the viniferins by grapevines in response to ultraviolet irradiation. Phytochem. 16:1193-1196. https://doi.org/10.1016/S0031-9422(00)94358-9
  12. Lorenz, P., S. Roychowdhury, M. Engelmann, G. Wolf, and T.F.W. Horn. 2003. Oxyresveratrol and resveratrol are potent antioxidants and free radical scavengers: Effect on nitrosative and oxidative stress derived from microglial cells. Nitric Oxide 9:64-76. https://doi.org/10.1016/j.niox.2003.09.005
  13. Luckey, T.D. 1980. Hormesis with ionizing radiation. CRC Press. Boca Raton.
  14. Morales, M., A.R. Barcelo, and M.A. Pedereno. 2000. Plant stilbenes: Recent advances in their chemistry and biology. Adv. Plant Physiol. 3:39-70.
  15. Regev-Shoshani, G., O. Shoseyov, I. Bilkis, and Z. Kerem. 2003. Glycosylation of resveratrol protects it from enzymic oxidation. Biochem. J. 374:157-163. https://doi.org/10.1042/BJ20030141
  16. Roh, J.H., H.K. Yun, K.S. Park, Y.J. Choi, S.S. Hong, and S.H. Jeon. 2005. Salicylic acid and resveratrol content changes as affected by Downy Mildew and Anthracnose in grapevine. J. Kor. Soc. Hort. Sci. 46:59-63.
  17. Sales, J.M. and A.V.A. Resurreccion. 2009. Maximising resveratrol and piceid contents in UV and ultrasound treated peanuts. Food Chem. 117:674-680. https://doi.org/10.1016/j.foodchem.2009.04.075
  18. Sarig, P., Y. Zutkhi, A. Monjauze, N. Lisker, and R. Ben-Arie. 1997. Phytoalexin elicitation in grape berries and their susceptibility to Rhizopus stolonifer. Physiol. Mol. Plant Pathol. 50:337-347. https://doi.org/10.1006/pmpp.1997.0089
  19. Shama, G. and P. Alderson, 2005. UV hormesis in fruits: A concept ripe for commercialisation. Trends Food Sci. Technol. 16:128-136. https://doi.org/10.1016/j.tifs.2004.10.001
  20. Wang, W., K. Tang, H.R. Yang, P-F. Wen, P. Zhang, H.L. Wang, and W.D. Huang. 2010. Distribution of resveratrol and stilbene synthase in young grape plant (Vitis vinifera L. cv. Cabernet Sauvignon) and the effect of UV-C on its accumulation. Plant Physiol. Biochem. 48:142-152. https://doi.org/10.1016/j.plaphy.2009.12.002