Effect of Root Zone Temperature on the Induction of Inflorescence of Phalaenopsis in Summer

하절기 근권 온도가 팔레놉시스의 화경 발생에 미치는 영향

  • Lee, Dong-Soo (Floriculture Research Division, National Institute of Horticultural & Herbal Science) ;
  • Lee, Young-Ran (Floriculture Research Division, National Institute of Horticultural & Herbal Science) ;
  • Yae, Byeong-Woo (Floriculture Research Division, National Institute of Horticultural & Herbal Science)
  • 이동수 (국립원예특작과학원 화훼과) ;
  • 이영란 (국립원예특작과학원 화훼과) ;
  • 예병우 (국립원예특작과학원 화훼과)
  • Received : 2010.09.07
  • Accepted : 2010.12.10
  • Published : 2011.02.28

Abstract

The influence of root zone temperature to the induction of inflorescence and growth of Phalaenopsis was investigated. Root zone temperatures were 15, 20, 25, and $30^{\circ}C$, while the air temperature was kept over $28^{\circ}C$ during three months. $CO_2$ uptake, fresh weight, dry weight and branched root number of Phalaenopsis were highest at $25^{\circ}C$ and lowest at $15^{\circ}C$. But, the anthocyanin content was highest at $15^{\circ}C$ and lowest at $25^{\circ}C$. Inflorescence was not induced by root zone cooling temperature below $25^{\circ}C$ for three months. The concentrations of K, Ca and Mg in leaves were changed according to the root zone temperature, but those of N and P were not changed. K content was high at $20^{\circ}C$, whereas Ca and Mg contents were high at $25^{\circ}C$ root zone temperature. This study indicates that Phalaenopsis perceives temperature by shoot and the optimum root-zone temperature for the vegetative growth is $25^{\circ}C$.

본 연구는 근권 온도가 팔레놉시스의 화경 발생과 생육에 미치는 영향을 알아보고자 시험을 수행하였다. 근권 온도는 15, 20, 25 그리고 $30^{\circ}C$로 처리하였으며, 기온은 실험기간 동안 $28^{\circ}C$ 이상으로 유지하였다. 팔레놉시스의 $CO_2$ 흡수, 생체중, 건물중 그리고 분지근수는 $25^{\circ}C$에서 가장 높고, $15^{\circ}C$에서 가장 낮았다. 하지만 안토시아닌 함량은 $15^{\circ}C$에서 가장 높고 $25^{\circ}C$에서 가장 낮았다. 3개월간 근권을 $25^{\circ}C$ 이하로 저온처리해도 화경은 발생하지 않았다. K, Ca, Mg의 함량은 근권온도에 따라 변했으나, N과 P의 함량은 차이가 없었다. Ca과 Mg은 $25^{\circ}C$에서 가장 높았던 반면, K은 $20^{\circ}C$에서 가장 높았다. 본 실험결과 팔레놉시스의 온도 감응 부위는 지상부이며, 영양생장에 적합한 근권 온도는 $25^{\circ}C$이다.

Keywords

References

  1. Blanchard, M.G. and E.S. Runkle. 2006. Temperature during the day, but not during the night controls flowering of Phalaneopsis orchids. J. Expt. Bot. 57:4043-4049. https://doi.org/10.1093/jxb/erl176
  2. Choi, K.J., G.C. Chung, and S.J. Ahn. 1995. Effect of root zone temperature on the mineral composition of xylem sap and plasma membrane $K^{+}$-$Mg^{++}$-ATPase activity of grafted-cucumber and figleaf gourd root system. Plant Cell Physiol. 36:639-643.
  3. Dycus, A.M. and L. Knudson. 1957. The role of the velamen of the aerial roots of orchids. Bot. Gaz. 119:78-87. https://doi.org/10.1086/335966
  4. Eguchi, T., M. Kitano, and H. Eguchi. 1994. Effect of root temperature on sink strength of tuberous root in sweet potato plants. Biotronics 23:75-80.
  5. Fortin, M.C.A. and K.L. Poff. 1990. Temperature sensing by primary roots of maize. Plant Physiol. 94:367-369. https://doi.org/10.1104/pp.94.1.367
  6. Freed, H. 1976. Phalaenopsis are easy to grow. Amer. Orchid Soc. Bul. 45:405-408.
  7. George, H.L., F.S. Davies, J.H. Crane, and B. Schaffer. 2002. Root temperature effects on 'Arkin' carambola (Averrhoa carambola L.) trees. I. Leaf gas exchange and water relations. Scientia Hort. 96:53-65. https://doi.org/10.1016/S0304-4238(02)00090-0
  8. Horio, S. and S. Ichihashi. 2003. Control of spiking in Phalaenopsis by nitrogen fertilization under lower temperature. J. Jpn. Soc. Hort. Sci. 72:223.
  9. Kim, Y.S., M.R. Huh, and J.C. Park. 2002. Effect of root zone temperatures on the early growth of 'Seokun' and 'Kakemusa' tomato in hydroponics. Kor. J. Hort. Sci. Technol. 20:10-14.
  10. Lopez, R.G. and E.S. Runkle. 2005. Environmental physiology of growth and flowering of orchids. HortScience 40:1969-1973.
  11. Metzger, J.D. 1988. Localization of the site of perception of thermoinductive temperatures in Thlaspi arvense L. Plant Physiol. 88:424-428. https://doi.org/10.1104/pp.88.2.424
  12. McMichael, B.L. and J.E. Quisenberry. 1993. The impact of the soil environment on the growth of root systems. Environ. Expt. Bot. 33:53-61. https://doi.org/10.1016/0098-8472(93)90055-K
  13. McMichael, B.L. and J.J. Burke. 1998. Soil temperature and root growth. HortScience 33:947-951.
  14. Monje, O., S. Anderson, and G.W. Stutte. 2007. The effects of elevated root zone temperature on the development and carbon partitioning of spring wheat. J. Amer. Soc. Hort. Sci. 132: 178-184.
  15. Newton, L.A. and E.S. Runkle. 2009. High-temperature inhibition of flowering of Phalaenopsis and Doritaenopsis orchids. HortScience 44:1271-1276.
  16. Ojeda, M., B. Schaffer, and F.S. Davies. 2004. Soil temperature, physiology, and growth of containerized Annona species. Scientia Hort. 102:243-255. https://doi.org/10.1016/j.scienta.2004.01.005
  17. Park. K.W., M.H. Chiang, J.H. Won, and K.H. Jang. 1995. The effect of nutrient solution temperature on the absorption of water and minerals in Chinese leafy vegetables. Kor. J. Hort. Sci. Technol. 36:309-316.
  18. Peacock, J.M. 1975. Temperature and leaf growth in Lolium perenne. II. The site of temperature perception. J. Appl. Ecol. 12:115-123. https://doi.org/10.2307/2401721
  19. Sakanishi, Y., H. Imanishi, and G. Ishida. 1980. Effect of temperature on growth and flowering of Phalaenopsis amabilis. Bull. Univ. Osaka Pref., Ser. 32:1-9.
  20. Scott, L.C. 1999. Environmental significance of anthocyanins in plant stress responses. Photochem. Photobiol. 70:1-9. https://doi.org/10.1111/j.1751-1097.1999.tb01944.x
  21. Spiers, J.M. 1995. Substrate temperature influence root and shoot growth of southern highbush and rabbiteye blueberries. Hortscience 30:1029-1030.
  22. Tamotsu, H., S. Yoshtake, K. Satoshi, and M. Koshioka. 2001. Delaying anthesis by dark treatment in Phalaenopsis. J. Jpn. Soc. Hort. Sci. 70:264-266. https://doi.org/10.2503/jjshs.70.264
  23. Tachibana, S. 1989. Respiratory response of detached roots to lower temperature in cucumber and figleaf gourd grown at $20{^{\circ}C}$ root temperature. J. Jpn. Soc. Hort. Sci. 58:333-337. https://doi.org/10.2503/jjshs.58.333
  24. Tindall, J.A., H.A. Mills, and D.E. Radcliffe. 1990. The effect of root zone temperature on nutrient uptake of tomato. J. Plant Nutr. 13:939-956. https://doi.org/10.1080/01904169009364127
  25. Yoshida, S. and H. Eguchi. 1989. Effect of root temperature on gas exchange and water uptake in intact roots of cucumber plants in hydroponics. Biotronics 18:15-21.
  26. Ziska, L.H. 1998. The influence of root zone temperature on photosynthetic acclimation to elevated carbon dioxide concentrations. Ann. Bot. 81:717-721. https://doi.org/10.1006/anbo.1998.0626