Changes in Endogenous Abscisic Acid, Jasmonic Acid and Sucrose Content during Bulb Development in the Cold-type Cultivar of Garlic (Allium sativum L.) of Korea

한지형 마늘의 인경 발육과정에서 식물내생호르몬 Abscisic Acid, Jasmonic Acid 및 당 함량변화

  • Sohn, Eun-Young (School of Applied Biosciences, Kyungpook National University) ;
  • Kim, Yoon-Ha (School of Applied Biosciences, Kyungpook National University) ;
  • Kim, Jung-Tae (Cental Research Institute, Kyung Nong Corporation) ;
  • Jang, Soo-Won (Tobacco Research Group, KT&G Research Institute) ;
  • Lee, In-Jung (School of Applied Biosciences, Kyungpook National University)
  • Received : 2010.08.22
  • Accepted : 2010.12.08
  • Published : 2011.02.28

Abstract

This study was performed to investigate the role of plant growth substances on the bulbing of cold type of garlic (Allium sativum L. cv. Uiseongmaneul) during long and short day conditions. The change in endogenous plant hormones such as abscisic acid (ABA), jasmonic acid (JA) and sugar contents in leaf blade and sheath was examined during the growth stage from bulb differentiation (starting at April 16) to bulbing (April 24 to May 18) in cold type of garlic. In the long day condition, ABA contents were higher than short day condition and ABA contents of leaf sheath were higher than leaf blade. ABA contents of growth stage in garlic were not changed during growth stage from April 16 to May 2, however it rapidly increased during bulbing (May 2 to May 18). On the other hand, endogenous JA contents in short day condition did not change in long day condition, it increased from April 16 to May 2. JA contents in the leaf sheath (33.85-62.04 $ng{\cdot}g^{-1}$ DW) were higher than leaf blade (15.39-30.04 $ng{\cdot}g^{-1}$ DW). These results showed that garlic bulb differentiation and bulbing was induced by JA in leaf sheath. In long day condition, total sugar contents in the leaf blade were increased from bulb differentiation (April 16) to bulbing (May 4) and it was decreased during bulbing (May 4 to May 18) while the total sugar content in leaf sheath were gradually increased from bulb differentiation (April 16) to bulbing (May 18). In conclusion, our results showed that there is a significant correlation between the bulb development of garlic and hormonal content in the leaf sheath.

본 연구는 한지형 마늘인 '의성마늘'을 이용하여 장일과 단일 조건에서 재배하여 마늘의 인경 분화 및 비대에 미치는 식물 생장 물질의 역할에 대해서 조사하였다. 한지형 마늘의 인경 분화기(4월 16)부터 인경 비대기(4월 24일, 5월 18일)에 엽신과 엽초내 식물내생호르몬 abscisic acid (ABA), jamonic acid(JA) 및 당 함량변화는 장일조건에서 ABA 함량이 단일조건에서 ABA 함량보다 높았고, 엽초내 ABA 함량이 엽신내 ABA 함량보다 높은 것으로 조사되었다. 마늘생육시기별 ABA 함량은 인편 분화기에서 인경 비대개시기까지는 큰 변화가 없다가 인경 비대개시기(5월 2일) 이후부터 인경이 비대 되는(5월 18일) 동안 그 함량이 현저히 증가하는 것으로 조사되었다. 반면 단일조건에서는 내생 JA 함량은 변화가 없었으나, 장일조건에서는 인편 분화기(4월 16일)부터 인경 비대개시기(5월 2일)까지 JA 함량은 증가되었다. 엽초내 JA 함량($30.19-53.19ng{\cdot}g^{-1}$ DW)은 엽신내 JA 함량($12.82-20.41ng{\cdot}g^{-1}$ DW)보다 높은 것으로 조사되어 엽초 내 JA 함량에 의해 마늘의 인경 비대가 유도되는 것으로 조사되었다. 장일 조건에서 엽신내 당 함량은 인편 분화기(4월 16일)부터 인경 비대개시기(5월 4일)까지 증가되었고, 인경 비대기(5월 4일에서 5월 8일) 동안 감소하였으나, 엽초내 당 함량은 인편 분화기(4월 16일)부터 인경 비대기(5월 18일)까지 서서히 증가되었다. 결론적으로 한지형 의성마늘 생장양상에 따라 엽초내 호르몬도 변화하는 경향을 보여 호르몬 변화가 마늘 생장과 밀접한 연관이 있음을 보여주었다.

Keywords

References

  1. Abdullah, Z.N. and R. Ahmad. 1980. Effect of ABA and $GA_{3}$ on tuberization and some chemical constituents of potato. Plant Cell Physiol. 21:1343-1346.
  2. Baldwin, I.T., E.A. Schmelz, and T.E. Ohnmeiss. 1994. Woundinduced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis in Nicotiana sylvestris. J. Chem. Ecol. 20:2139-257. https://doi.org/10.1007/BF02066250
  3. Browning, G. and T.A. Wignall. 1987. Identification and quantification of indole-3-acetic and abscisic acids in the cambial region of Quercus robur by combined GA chromatographymass spectrometry. Tree Physiol. 3:235-246. https://doi.org/10.1093/treephys/3.3.235
  4. Chou, C.M. and C.H. Kao. 1992 Methyl jasmonate, calcium, and leaf senescence in rice. Plant Physiol. 99:1693-1694. https://doi.org/10.1104/pp.99.4.1693
  5. Darbyshire, B. and R.J. Heath. 1980. Differences in fructan content and synthesis in some Allium species. New Phytologist 87: 249-256.
  6. El-Antably, H.A.A., P.E. Wareing, and J. Hillman. 1967. Some physiological responses to d,1-abscisin (dormin). Planta 73:74-90. https://doi.org/10.1007/BF00419842
  7. Fernie, A.R. and L. Willmitzer. 2001 Molecular and biochemical triggers of potato tuber development. Plant Physiol. 127:1459- 1465. https://doi.org/10.1104/pp.010764
  8. Gross, D. and B. Parthier. 1994. Novel natural substance acting in plant growth regulation. J. Plant Growth Regul. 13:93-114. https://doi.org/10.1007/BF00210953
  9. Gundlach, H.M., M.J. Muller, T.M. Kutchan, and M.H. Zenk. 1992. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc. Natl. Acad. Sci. USA 89:2389-2393. https://doi.org/10.1073/pnas.89.6.2389
  10. Gyeongsangbuk-do Agricultural Research and Extension Services (GARES). 2004. Establishment of renewal system of superior bulb in cold-type cultivar of garlic (Allium satrvum L.). Agr. Res. Rpt. 1:123-128.
  11. Helder, H., O. Miersch, D. Vreugdenhil, and G. Sembdner. 1993. Occurrence of hydroxylated jasmonic acids in leaflets of Solanum demissum plants grown under long and short day conditions. Physiol. Plant 88:647-653. https://doi.org/10.1111/j.1399-3054.1993.tb01384.x
  12. Herde, O., H. Pena-Cortes, L. Willmitzer, and J. Fisahn. 1997. Stomatal responses to jasmonic acid, linolenic acid and abscisic acid in wild-type and ABA-deficient tomato plants. Plant Cell Environ. 20:136-141. https://doi.org/10.1046/j.1365-3040.1997.d01-11.x
  13. Hoffmann-Benning, S. and H. Kende. 1992. On the role of abscisic acid and gibberellins in the regulation of growth in rice. Plant Physiol. 99:1156-1161. https://doi.org/10.1104/pp.99.3.1156
  14. Hong, G.H., S.K. Lee, and W. Moon. 1997. Alliin and fructan contents in garlics, by cultivars and cultivating areas. Hort. Environ. Biotechnol. 10:453-603.
  15. Jaume, A.R., G. Abdala, M. Corral, L. Grosso, and R. Tizio. 1997. Possible involvement of jasmonic acid in bulb forming of garlic (Allium sativum L.). Acta Hort 433:381-388.
  16. Kamboj, J.S., G. Browning, P.S. Blake, J.D. Quinlan, and D.A. Baker. 1999. GC-MS-SIM analysis of abscisic acid and indole- 3-acetic acid in shoot bark of apple rootstocks. Plant Growth Regul. 28:21-27. https://doi.org/10.1023/A:1006299414481
  17. Kato, T. 1965. Physiological studies on the bulbing and dormancy of onion plant. V. The relation between the metabolism of carbohydrates, nitrogen compound, and auxin and the bulbing phenomenon. J. Jpn. Soc. Hort. Sci. 34:187-195. https://doi.org/10.2503/jjshs.34.187
  18. Koch, T., T. Krumm, V. Jung, J. Engelberth, and W. Boland. 1999. Differential induction of plant volatile biosynthesis in the lima bean by early and late intermediates of the octadecanoid -signaling pathway. Plant Physiol. 121:153-162. https://doi.org/10.1104/pp.121.1.153
  19. Koda, Y. 1997. Possible involvement of jasmonates in various morphogenetic events. Physiol Plant 100:639-646. https://doi.org/10.1111/j.1399-3054.1997.tb03070.x
  20. Koda, Y. and Y. Kikuta. 1991. Possible involvement of jasmonic acid in tuberization of yam plants. Plant Cell Physiol. 32: 629-633.
  21. Lee, W.S. 1973. Physiological and ecological studies on Korean local strains of garlic - 1, on the process of sprouting in stored garlic. Hort. Environ. Biotechnol. 14:15-23.
  22. Lee, W.S. 1974. Studies on dormancy of Korean local garlics. Hort. Environ. Biotechnol. 15:119-141.
  23. Mader, J.C. 1999. Effect of jasmonic acid, silver nitrate and L-AOPP on the distribution of free and conjugated polyamines in roots and shoots of Solanum tuberosum in vitro. J. Plant Physiol. 154:79-88. https://doi.org/10.1016/S0176-1617(99)80321-6
  24. Mann, L.K. 1952. Anatomy of the garlic bulb and factors affecting bulb development. Hilgardia 21:195-251.
  25. Mann, L.K. and D.A. Lewis. 1956. Rest and dormancy in garlic. Hilgardia 26:161-189.
  26. Marschner, H., B. Sattelmacher, and F. Bangerth. 1984. Growth rate of potato tubers and endogenous contents of indolylacetic acid and abscisic acid. Physiol. Plant 60:16-20. https://doi.org/10.1111/j.1399-3054.1984.tb04242.x
  27. Meir, S., S. Philosoph-Hadas, S. Lurie, S. Droby, M. Akorman, G. Zauberman, B. Shapiro, E. Cohen, and Y. Fuchs. 1996. Reduction of chilling injury in stored avocado, grapefruit, and bell pepper by methyl jasmonate. Can. J. Bot. 74:870-874. https://doi.org/10.1139/b96-108
  28. Meyer, A., O. Miersch, C. Bueltner, W. Dathe, and G. Sembdner. 1984. Occurrence of the plant growth regulator jasmonic acid in plants. J. Plant Growth Regul. 3:1-8. https://doi.org/10.1007/BF02041987
  29. Mita, T. and H. Shibaoca. 1983. Changes in microtubules in onion leaf cells during bulb development. Plant Cell Physiol. 24: 109-117.
  30. Mueller, M.J. and W. Brodschelm. 1994. Quantification of jasmonic acid by capillary gas chromatography-negative chemical ionization- mass spectrometry. Anal. Biochem. 218:425-435. https://doi.org/10.1006/abio.1994.1202
  31. Nam, S.K., I.H. Choi, S.K. Bae, and J.K. Bang. 2007. Effect of irrigation level on plant growth and bulb yield during bulb development stage of garlic plants. Kor. J. Hort. Sci. Technol. 25:169-173.
  32. Nam, S.K., I.H. Choi, S.K. Bae, and J.K. Bang. 2008. Effect of scape cut during bulb development stage on carbohydrate formation and yield of garlic (Allium sativum L.). Kor. J. Hort. Sci. Technol. 26:215-218.
  33. Qi, Q.G., P.A. Rose, G.D. Abrams, D.C. Taylor, S.R. Abrams, and A.J. Cutler. 1998. (+)-Abscisic acid metabolism, 3-ketoacylcoenzyme A synthase gene expression, and very-long-chain monosaturated fatty acid biosynthesis in Brassica napus embryos. Plant Physiol. 117:979-987. https://doi.org/10.1104/pp.117.3.979
  34. Nojiri, H., H. Yamane, H. Seto, I. Yamaguchi, N. Murofushi, T. Yoshihara, and H. Shibaoka. 1992. Qualitative and quantitative analysis of endogenous jasmonic acid in bulbing and nonbulbing onion plants. Plant Cell Physiol. 33:1225-1231.
  35. Ravnikar, M., T. Zel, I. Plaper, and A. Spacapan. 1993. Jasmonic acid stimulates shoot and bulb formation of garlic in vitro. J. Plant Growth Regul. 12:73-77. https://doi.org/10.1007/BF00193236
  36. Suttle, J.C. and J.F. Hultstrand. 1994. Role of endogenous abscisic acid in potato microtuber dormancy. Plant Physiol. 105:891-896.
  37. Xu, X., A.A.M. van Lammeren, E. Vermeer, and D. Vreugdenhil. 1998. The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiol. 117:575-584. https://doi.org/10.1104/pp.117.2.575
  38. Yamazaki, H., T. Nishijima, and M. Koshioka. 1995. Changes in abscisic acid content and water status in bulbs of Allium wakegi Araki throughout the year. J. Jpn. Soc. Hort. Sci. 64:589-598. https://doi.org/10.2503/jjshs.64.589
  39. Yamazaki, H., T. Nishijima, M. Koshioka, and H. Miura. 2002. Gibberellins do not act against abscisic acid in the regulation of bulb dormancy of Allium wakegi Araki. Plant Growth Regul. 36:223-229. https://doi.org/10.1023/A:1016577529378
  40. Yamazaki, H., T. Nishijima, Y. Yamato, M. Hamano, M. Koshioka, and H. Miura. 1999a. Involvement of abscisic acid (ABA) in bulb dormancy of Allium wakegi Araki. II. A comparison between dormant and nondormant cultivars. Plant Growth Regul. 29:195-200. https://doi.org/10.1023/A:1006241101936
  41. Yamazaki, H., T. Nishijima, Y. Yamato, M. Koshioka, and H. Miura. 1999b. Involvement of abscisic acid (ABA) in bulb dormancy of Allium wakegi Araki I. Endogenous levels of ABA in relation to bulb dormancy and effects of exogenous ABA and fluridone. Plant Growth Regul. 29:189-194. https://doi.org/10.1023/A:1006212427997
  42. Wareing, P.F. and A.M.V. Jennings. 1980. The hormonal control of tuberization in potato, p. 293-300. In: Skoog, F. (ed.). Plant Growth Substances. Springer-Verlag, NY, Ind.