DOI QR코드

DOI QR Code

High Strain Rate Tensile Test of Composite Material for Automotive Front End Module Carrier

자동차 프론트엔드모률 캐리어용 경량 복합소재의 고속인장 시험

  • Published : 2011.06.30

Abstract

High strain rate tensile tests were performed to measure the strain rate sensitivity of fiber reinforced composite material. The composite material was developed for the light weight design of an automotive FEM(front end module) carrier. Standard specimens for quasi-static tests of fiber reinforced composites can be found in ASTM D3039. However, in case of high strain rate tests, it was hard to find standard specimen shapes. In this study, three kinds of tensile specimens designed based on ASTM D638 were investigated to determined the adequate gauge width of tensile specimen for fiber reinforced composite. A drop tower type of high speed tensile apparatus was developed for strain rates of about 15/s and 100/s. Gauge width of 6mm, 8mm and 10mm were investigated. Test results showed the specimen of 8mm width was adequate for the high strain rate tensile tests of fiber reinforced composite. It was found the strength of the composite material increased as the strain rate increased.

경량복합소재의 고속인장시험을 수행하여 변형률속도에 따른 강도변화를 측정하고자 한다. 준 정적 시험인 경우 섬유강화 복합소재의 인장시험은 ASTM D3039에 따른 시편 형상이 사용되지만 고속 인장시험인 경우 표준화된 시편 형상에 대한 연구가 진행되어 있지 않다. 본 연구에서는 ASTM D638에 나타난 시편 형상을 기본으로 몇 가지 변형된 형태의 시편을 가지고 고속인장 시험을 수행하여 변형률 속도에 따른 경량복합소재의 강도 변화를 측정하였다. 낙하방식의 고속인장 시험기를 제작하여 변형률 속도 15/s, 100/s에서 시편의 형상에 따른 섬유강화 복합소재의 인장거동을 측정하였으며 시편의 폭이 6mm, 8mm, 10mm인 경우에 대하여 시험을 수행하였다. 측정 결과 시편의 폭이 8mm인 경우 섬유강화 복합소재의 강도를 정확하게 평가할 수 있는 것으로 나타났다.

Keywords

Acknowledgement

Supported by : 경일대학교

References

  1. Park S.J., Lee K.S., Kim Y.S. and 1Gm J.S., "A Study on the Tensile Properties of Plastics used in Automotive Instrument Panel at High Strain Rates under High and Low Temperature Environments," 한국자동차공학회 추계학술대회 논문집 3호, 2006, pp. 1930-1934.
  2. Arriaga A, Pagaldai R., Zaldua A.M., Chrysostomou A. and O'Brienb M., "Impact testing and simulation of a polypropylene component. Correlation with strain rate sensitive constitutive models in ANSYS and LS-DYNA," Polymer Testing, Vol. 29, Issue 2, 2010, pp. 170-180. https://doi.org/10.1016/j.polymertesting.2009.10.007
  3. Ha D.Y., Lee K.W., Ahn B.J., Lee D.H., "Analysis of Lower Legform Pedestrian Protection Considering High Strain-rate Effects," 한국자동차공학회 정기 학술대회 논문집, 2010, pp. 2211-2213.
  4. Hosur M.V., Alexander J., Vaidya U.K, Jeelani S., "High strain rate compression response of carbon/epoxy laminate composites," Composite Structures, Vol. 52, Issues 3-4, 2001, pp. 405-417. https://doi.org/10.1016/S0263-8223(01)00031-9
  5. Hosur M.V., Adya M., Vaidya U.K., Mayer A. and Jeelania S., "Effect of stitching and weave architecture on the high strain rate compression response of affordable woven carbon/epoxy composites," Composite Structures, Vol. 59, Issue 4, 2003, pp. 507-523. https://doi.org/10.1016/S0263-8223(02)00247-7
  6. Brown K.A., Brooks R. and Warrior N.A., "The static and high strain rate behaviour of a commingled E-glass/polypropylene woven fabric composite," Composites Science and Technology, Vol. 70, Issue 2, 2010, pp. 272-283. https://doi.org/10.1016/j.compscitech.2009.10.018
  7. Kim J.S., Huh H., Lee K.W., Ha D.Y., Yeo T.J. and Park S.J., "Evaluation of dynamic tensile characteristics of polypropylene with temperature variation," International Journal of Automotive technology, Vol. 7, No.5, 2006, pp. 571-577.
  8. 강우종, 전성식, 이인혁, 최선웅, 민제홍, 이상혁, 배봉국, "EPS Foam의 변형률속도효과에 대한 연구," 한국복합재료학회지, 제23권 제3호, 2010, pp. 64-68.
  9. Arriaga A., Lazkano J.M., Pagaldai R., Zaldua A.M., Hernandez R. Atxurra R and Chrysostomou A, "Finite-element analysis of quasi-static characterisation tests in thermoplastic materials: Experimental and numerical analysis results correlation with ANSYS," Polymer Testing, Vol. 26, Issue 3, 2007, pp. 284-305. https://doi.org/10.1016/j.polymertesting.2006.10.012