Nano Scale Compositional Analysis by Atom Probe Tomography: II. Applications on Electronic Devices and Nano Materials

Atom Probe Tomography를 이용한 나노 스케일의 조성분석: II. 전자소자 및 나노재료에서의 응용

  • Jung, Woo-Young (Department of Material Science and Engineering, POSTECH) ;
  • Bang, Chan-Woo (Department of Material Science and Engineering, POSTECH) ;
  • Jang, Dong-Hyun (Department of Material Science and Engineering, POSTECH) ;
  • Gu, Gil-Ho (Department of Material Science and Engineering, POSTECH) ;
  • Park, Chan-Gyung (Department of Material Science and Engineering, POSTECH)
  • 정우영 (포항공과대학교 신소재공학과) ;
  • 방찬우 (포항공과대학교 신소재공학과) ;
  • 장동현 (포항공과대학교 신소재공학과) ;
  • 구길호 (포항공과대학교 신소재공학과) ;
  • 박찬경 (포항공과대학교 신소재공학과)
  • Received : 2011.06.03
  • Accepted : 2011.06.24
  • Published : 2011.06.30

Abstract

Atom Probe Tomography (APT) can provide 3-dimensional information such as position and chemical composition with atomic resolution. Despite the ability of this technique, APT could not be applied for poor conductive materials such as semiconductor. Recently APT has dramatically developed by applying the laser pulsing and combining with Focused Ion Beam (FIB). The invention and combination of these techniques make possible site-specific sample preparation and permit the investigation of various materials including insulators. In this paper, we introduced the recently achieved state of the art applications of APT focusing on Si based FET devices, LED devices, low dimensional materials.

Atom Probe Tomography는 원자 수준의 분해능으로 원소의 위치 및 조성 정보를 3차원으로 제공해 주는 분석 장비이다. APT의 우수한 성능에도 불구하고 반도체 등, 저전도성 물질 분석에는 그 동안 적용이 어려웠다. 그러나 특정 시료 내 위치의 시편을 가공할 수 있는 FIB 시편 제조법과 laser펄스를 이용한 전계증발법의 개발로 APT의 분석 영역이 반도체에서 절연체까지 크게 확대 되고 있다. 본 논문에서는 최근에 적용되기 시작한 MOS-FET, GaN LED, Si-Nanowire 등 전자소자에서의 APT분석 응용사례에 대하여 살펴보았다.

Keywords

References

  1. Bennett SE, Clifton PH, Ulfig RM, Kappers MJ, Barnard JS, Humphreys CJ, Oliver RA: Atom probe extended to AlGaN: threedimensional imaging of a Mg-doped AlGaN/GaN superlattice. Phys Status Solidi C 7 : 1781-1783, 2010. https://doi.org/10.1002/pssc.200983510
  2. Brindos R, Keys P, Jones KS: Effect of arsenic doping on (311) defect dissolution in silicon. Appl Phys Lett 75 : 229-231, 1999. https://doi.org/10.1063/1.124331
  3. Cottrell H, Bilby BA: Distribution of solute atoms round a slow dislocation. Proc Phys Soc London Ser A 199 : 104-114, 1949. https://doi.org/10.1098/rspa.1949.0128
  4. Deb P, Kim H, Qin Y, Lahiji R, Oliver M, Reifenberger R, Sands T: GaN nanorod schottky and p-n junction diodes. Nano lett 6 : 2893-2898, 2006. https://doi.org/10.1021/nl062152j
  5. Deepak FL, Esparza R, Borges B, Lozano XL, Yacaman MJ: Direct imaging and identification of individual dopant atoms in $MoS_{2}$ and $WS_{2}$ catalysts by aberration corrected scanning transmission electron microscopy. ACS Catal 1 : 537-543, 2011.
  6. Fahey PM, Griffin PB, Plummer JD: Point defects and dopant diffusion in silicon. Rev Mod Phys 61 : 289-384, 1989. https://doi.org/10.1103/RevModPhys.61.289
  7. Galtrey MJ, Oliver RA, Kappers MJ, Humphreys CJ: Three-dimensional atom probe studies of an $In_{X}Ga_{1-X}N/GaN$ multiple quantum well structure: Assessment of possible indium clustering. Appl Phys Lett 90 : 061903 1-3, 2007.
  8. Gu GH, Lee HBR, Kim HJ, Park CG: Atomic structure and composition at the interface of epitaxial $CoSi_{2}$ on Si (001), The 9th Asia-Pacific Microscopy Conference, p. 11, JeJu, 2008. (Abstract)
  9. Gu GH, Park CG, Nam KB: Inhomogeneity of a highly efficient InGaN based blue LED studied by three-dimensional atom probe tomography. Phys Status Solidi RRL 3 : 100-102, 2009. https://doi.org/10.1002/pssr.200903007
  10. Inoue K, Yano F, Nishida A, Takamizawa H, Tsunomura T, Nagai Y, Hasegawa M: Dopant distributions in n-MOSFET structure observed by atom probe tomography. Ultramicroscopy 109 : 1479-1484, 2009. https://doi.org/10.1016/j.ultramic.2009.08.002
  11. Kellogg GL, Tsong TT: Pulsed-laser atom-probe field-ion microscopy. J Appl Phys 51 : 1884-1193, 1980.
  12. Larson DJ, Foord DT, Petford-Long AK, Liew H, Blamire MG, Cerezo A, Smith GDW: Field-ion specimen preparation using focused ion-beam milling. Ultramicroscopy 79 : 287-293, 1999. https://doi.org/10.1016/S0304-3991(99)00055-8
  13. Maex K: Silicides for integrated circuits: $TiSi_{2}$ and $CiSi_{2}$. Mater Sci Eng R 11 : 7-153, 1993.
  14. Miller MK: Atom probe tomography. Springer, New York, NY, pp. 1-23, 2000.
  15. Miredin OC, Pellegrino CP, Mangelinck D, Blavette D: Boron redistribution during reactive diffusion in Ni-Si contacts. Microelectron Eng 87 : 271-273, 2010. https://doi.org/10.1016/j.mee.2009.06.018
  16. Morimoto T, Ohguro T, Momose HS, Iinuma T, Kunishima I, Suguro K, Katakabe I, Nakajima H, Tsuchiaki M, Ono M, Katsumata Y, Iwai H: Self-aligned nickel-mono-silicide technology for high-speed deep sub-micrometer Logic CMOS ULSI. IEEE T Electron Dev 42 : 915-922, 1995. https://doi.org/10.1109/16.381988
  17. Muller EW, Tsong TT: Field ion microscopy, field ionization and field evaporation. Surf Sci 4 : 1-139, 1974.
  18. Nakamura S: The roles of structural imperfections in InGaN-based blue light emitting diodes and laser diodes. Science 281 : 956-961, 1998. https://doi.org/10.1126/science.281.5379.956
  19. Narayan J, Holland OW, Eby RE: Rapid thermal annealing of arsenic and boron-implanted silicon. Appl Phys Lett 43 : 957-959, 1983.
  20. Patolsky F, Lieber CM: Nanowire nanosensors. Mater Today 8 : 20-28, 2005.
  21. Perea DE, Allen JE, May SJ, Wessels BW, Seidman DN, Lauhon LJ: Three-dimensional nanoscale composition mapping of semiconductor nanowires. Nano Lett 6 : 181-185, 2006. https://doi.org/10.1021/nl051602p
  22. Perea DE, Hemesath ER, Schwalbach EJ, Lensch-Falk JL, Voorhees PW, Lauhon LJ: Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire. Nat Nanotechnol 4 : 315-319, 2009. https://doi.org/10.1038/nnano.2009.51
  23. Perea DE, Lensch JL, May SJ, Wessels BW, Lauhon LJ: Composition analysis of single semiconductor nanowires using pulsedlaser atom probe tomography. Appl Phys A 85 :271-275, 2006. https://doi.org/10.1007/s00339-006-3710-1
  24. Qian F: Multi-quantum-well nanowire heterostructures for wavelength- controlled lasers. Nat Mater 7 : 701-706, 2008. https://doi.org/10.1038/nmat2253
  25. Rhee HS, Jang TW, Ahn BT: Epitaxial growth of a (100) $CoSi_{2}$ layer from carbonic cobalt films deposited on (100) Si substrate using an organometallic source. Appl Phys Lett 74 : 1003-1005, 1999. https://doi.org/10.1063/1.123436
  26. Sawa A: Resistive switching in transition metal oxides. Mater Today 11 : 28-36, 2008.
  27. Sellier H, Lansbergen GP, Caro J, Rogge S: Transport spectroscopy of a single dopant in a gated silicon nanowire. Phys Rev Lett 97 : 206805 1-4, 2006.
  28. Smeeton TM, Kappers MJ, Barnard JS, Vickers ME, Humphreys CJ: Electron-beam-induced strain within InGaN quantum wells: False indium "cluster" detection in the transmission electron microscope. Appl Phys Lett 83 : 5419-5421, 2003. https://doi.org/10.1063/1.1636534
  29. Thompson K, Flaitz PL, Ronsheim P, Larson DJ, Kelly TF: Imaging of arsenic cottrell atmospheres around silicon defects by threedimensional atom probe tomography. Science 317 : 1370-1374, 2007. https://doi.org/10.1126/science.1145428
  30. Ural A, Griffin PB, Plummer JD: Fractional contributions of microscopic diffusion mechanisms for common dopants and self-diffusion in silicon. J Appl Phys 85 : 6440-6446, 1999. https://doi.org/10.1063/1.370285
  31. Williams CC, Hough WP, Rishton SA: Scanning capacitance microscopy on a 25 nm scale. Appl Phys lett 55 : 203-206, 1989. https://doi.org/10.1063/1.102096
  32. Wolf PD, Geva M, Hantschel T, Vandervorst W, Bylsma RB: Twodimensional carrier profiling of InP structures using scanning spreading resistance microscopy. Appl Phys Lett 73 : 2155-2157, 1998. https://doi.org/10.1063/1.122408
  33. Xu DX, Das SR, Peters CJ, Erickson LE: Material aspects of nickel silicide for ULSI applications. Thin Solid Films 326 : 143-150, 1998. https://doi.org/10.1016/S0040-6090(98)00547-1
  34. Zaringa C, Jianga H, Svenssona BG, Ostlinga M: Boron redistribution during formation of nickel silicides. Appl Surf Sci 53 : 147-152, 1991.