DOI QR코드

DOI QR Code

Correlation Analysis Between Soil Moisture Retrieved from Satellite Images and Ground Network Measurements

위성관측 토양수분과 지상관측망 자료의 상관성 분석

  • Kim, Gwang-Seob (School of Archi. and Civil Engineering, Kyungpook National University) ;
  • Kim, Jong-Pil (School of Archi. and Civil Engineering, Kyungpook National University)
  • 김광섭 (경북대학교 건축토목공학부) ;
  • 김종필 (경북대학교 건축토목공학부)
  • Received : 2011.03.22
  • Accepted : 2011.05.06
  • Published : 2011.06.30

Abstract

The soil moisture data of the National Aeronautics and Space Administration(NASA) and the Vrije Universiteit Amsterdam(VUA) in collaboration with NASA, retrieved from Advanced Microwave Scanning Radiometer-Earth observing system(AMSR-E) brightness temperature, were collected to evaluate the applicability of the remote sensed soil moisture in South Korea. The averages of the soil moisture by in-situ sensors, by NASA and by VUA-NASA are approximately 0.218, 0.119, and $0.402m^3/m^3$, respectively. This indicates that the soil moisture of NASA was underestimated and that of VUA-NASA was overestimated. The soil moisture products of VUA-NASA showed a better relationship with the in-situ data than that of NASA data. However, there are still limitations of C-band soil moisture measurements. To improve the applicability of satellite soil moisture measurements, bias correction and other post processings are essential using in-situ soil moisture measurements at various surface conditions.

원격탐사자료로부터 추정된 토양수분자료의 우리나라 지역에 대한 적용성을 평가하기 위하여 NASA와 VUA-NASA의 AMSR-E 토양수분자료를 수집하여, 2008년 5월 16일부터 8월 19일까지 용담댐 유역내 6개 지상관측지점의 토양수분자료와 비교분석을 수행하였다. 시계열 분석결과, 지상관측 토양수분자료의 평균은 약 $0.218m^3/m^3$, NASA 자료의 평균은 약 $0.119m^3/m^3$, VUA-NASA 자료의 평균은 약 $0.402m^3/m^3$으로 나타나, NASA의 토양수분자료는 용담댐 유역에 있어서 과소 추정되었으며, VUA-NASA 자료는 과대 추정되었다는 것을 알 수 있었다. 지상관측자료와의 상관성 분석결과, NASA 알고리듬을 이용한 토양수분자료보다 VUA-NASA의 토양수분자료가 지상관측자료와 더 높은 상관성을 보여주었다. 그러나 C-band 원격탐사 토양수분자료가 가지는 한계가 존재함을 알 수 있으며, 원격탐사 토양수분자료의 활용성을 높이기 위하여 다양한 토지피복, 식생 등에 대한 지상관측 토양수분을 활용한 편의보정 등 후처리가 필요한 실정이다.

Keywords

References

  1. 건설교통부, 한국수자원공사. 2006. 가뭄관리정보체계 수립 보고서.
  2. 국토해양부, 한국수자원공사. 2008. 가뭄정보시스템(물공급 Guideline 중심으로)보고서.
  3. 김광섭, 박한균. 2010. CART기법과 보조자료를 이용한 토양수분 추정. 한국수자원학회논문집 43(7):597-608.
  4. 김광섭, 이을래. 2004. 신경망기법과 보조자료를 사용한 원격측정 토양수분자료의 Downscaling기법 개발. 한국수자원학회논문집 37(1):21-29.
  5. 유철상. 1997. 토양수분 연구와 관련한 원격탐사의 이용. 한국수자원학회지 30(1)64-68.
  6. Choi, M. andd J.M. Jacobs. 2008. Tomporal variability corrections for Advanced Microwave Scanning Radiometer E(AMSR-E) surface soil moisture: case study in Little River Region, Georgia, U.S. Sensors 8:2617-2627. https://doi.org/10.3390/s8042617
  7. Draper, C.S., J.P. Walker, P.J. Steinle, R.A.M. de Jeu and T.R.H. Holmes. 2009. An evaluation of AMSR-E derived soil moisture over Australia. Remote Sensing of Environment DOI:10.1016/j.rse.2008.11.011.
  8. Jackson, T.J., M.H. Cosh, R. Bindlish, P.J. Starks, D.D. Bosch, M. Seyfried, D.C. Goodrich, M.S. Moran, and J. Du. 2010. Validation of advanced microwave scanning radiometer soil moisture products. IEEE Transactions on Geoscience and Remote Sensing 48(12):4256-4272. https://doi.org/10.1109/TGRS.2010.2051035
  9. Koike, T., Y. Nakamura, I. KaiHotsu, G. Davva, N. Matsuura, K. Tamagawa and H. Fujii. 2004. Development of an advanced microwave scanning radiometer (AMSR-E) algorithm of soil moisture and vegetation water content. Annual Journal of Hydraulic Engineering 48:217-222. https://doi.org/10.2208/prohe.48.217
  10. McCabe, M.F., H. Gao and E.F. Wood. 2005. Evaluation of AMSR-E-derived soil moisture retrievals using ground-based and PSR airborne data during SMEX02. Journal of Hydrometeorology 6:864-877. https://doi.org/10.1175/JHM463.1
  11. Njoku, E.G., and S.K. Chan. 2006. Vegetation and surface roughness effects on AMSR-E land observation. Remote Sensing of Environment 100:190-199. https://doi.org/10.1016/j.rse.2005.10.017
  12. Njoku, E.G., T.J. Jackson, V. Lakshmi, T.K. Chan and S.V. Nghiem. 2003. Soil moisture retreval from AMSR-E. IEEE Transactions on Geoscience and Remote Sensing 41(2):215-229. https://doi.org/10.1109/TGRS.2002.808243
  13. Nolan, M. and D.R. Fatland. 2003. Penetration depth as a DInSAR observable and proxy for soil moisture. IEEE Transactions on Geoscience and Remote Sensing 41(3):532-537. https://doi.org/10.1109/TGRS.2003.809931
  14. Owe, M., R.A.M. de Jeu and J.P. Walker. 2001. A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Transactions on Geoscience and Remote Sensing 39:1643-1654. https://doi.org/10.1109/36.942542
  15. Owe, M., R.A.M. de Jeu and T.R.H. Holmes. 2008. Multi-sensor historical climatology of satellite-derived global land surface moisture. Journal of Geophysical Research Earth Surface 113. DOI:1029/2007JF000769.
  16. Sahoo, A.K., P.R. Houser, C. Ferguson, E.F. Wood, P.A. Dirmeyer and M. Kafatos. 2008. Evaluation of AMSR-E soil moisture results using the in-situdata over the Little River Experimental Watershed, Georgia. Remote Sensing of Environment 112:3142-3152. https://doi.org/10.1016/j.rse.2008.03.007
  17. Wang, L., J. Wen, T. Zhang, Y. Tian, X. Shi, X. Wang, R. Liu, J. Zhang and S. Lu. 2009. Surface soil moisture estimates from AMSR-E observations over an arid area, Northwest China. Hydrology and Earth System Sciences Discussions, Vol. 6, pp. 1055-1087. https://doi.org/10.5194/hessd-6-1055-2009

Cited by

  1. Temporal and Spatial Variation of Soil Moisture in Upland Soil using AMSR2 SMC vol.48, pp.6, 2015, https://doi.org/10.7745/KJSSF.2015.48.6.658
  2. Spatial Downscaling of AMSR2 Soil Moisture Content using Soil Texture and Field Measurements vol.48, pp.6, 2015, https://doi.org/10.7745/KJSSF.2015.48.6.571
  3. Bias Correction of AMSR2 Soil Moisture Data Using Ground Observations vol.57, pp.4, 2015, https://doi.org/10.5389/KSAE.2015.57.4.061
  4. Spatial merging of satellite based soil moisture and in-situ soil moisture using conditional merging technique vol.49, pp.3, 2016, https://doi.org/10.3741/JKWRA.2016.49.3.263
  5. Terra MODIS NDVI 및 LST 자료와 RNN-LSTM을 활용한 토양수분 산정 vol.61, pp.6, 2011, https://doi.org/10.5389/ksae.2019.61.6.123
  6. SAR를 이용한 토양수분 및 수문인자 산출 연구동향 vol.23, pp.3, 2011, https://doi.org/10.11108/kagis.2020.23.3.026