DOI QR코드

DOI QR Code

Study for Recovery Silicon and Tempered Glass from Waste PV Modules

태양전지(太陽電池) 폐(廢) 모듈로부터 실리콘 및 강화(彈化)유리 회수(回收)에 관(關)한 연구(硏究)

  • Kang, Suk-Min (Korea Research Institute of Chemical Technology, Energy Materials Research Center) ;
  • Yoo, Sung-Yeol (Korea Research Institute of Chemical Technology, Energy Materials Research Center) ;
  • Lee, Jin-A (Korea Research Institute of Chemical Technology, Energy Materials Research Center) ;
  • Boo, Bong-Hyun (Chungnam National University, Department of Chemistry) ;
  • Ryu, Ho-Jin (Korea Research Institute of Chemical Technology, Energy Materials Research Center)
  • 강석민 (한국화학연구원 에너지소재센터) ;
  • 유성열 (한국화학연구원 에너지소재센터) ;
  • 이진아 (한국화학연구원 에너지소재센터) ;
  • 부봉현 (충남대학교 화학과) ;
  • 유호진 (한국화학연구원 에너지소재센터)
  • Received : 2010.12.10
  • Accepted : 2011.03.02
  • Published : 2011.04.29

Abstract

We devised a procedure for the recovery of silicon and tempered glass from waste photovoltaic (PV) modules using optimized conditions. The tempered glass was recovered without any damage using organic solvents. The surface material is removed by applying an acid solution on the surface of the PV cell. Through our proposed method, we offer a much more efficient approach for recycling solar cells with a surfactant than the conventional method. This process, we obtained pure silicon with a yield of 90% by chemical treatment with the surfactant at room temperature for 18 min. The silicon yield was characterized using an inductively coupled plasma-atomic emission spectrometer.

본 연구에서는 다양한 방법들을 이용하여 태양전지 폐 모듈로부터 태양전지의 주요 구성요소인 실리콘과 강화유리를 회수하는 연구를 수행하였다. 강화유리는 유기용매를 사용하여 회수하였고, EVA수지는 열처리를 통하여 완전히 제거하였다. 실리콘은 계면 활성제를 첨가한 혼산용액을 이용하여 표면물질을 제거하고 회수하였다. 90%이상의 높은 실리콘 회수율을 얻었다. 본 연구에 의하여 얻어진 강화유리와 실리콘은 태양전지 모듈의 원료로 재활용되어 실리콘 공급부족 문제해결, 태양전지 제조원가 및 폐기물 처리비용 절감에 기여할 것으로 기대된다.

Keywords

References

  1. Wang, T. et al., 2008 : A novel approach for recycling of kerf loss silicon from cutting slurry waste for solar cell applications, J. cryst. growth, 310, pp. 3403-3406. https://doi.org/10.1016/j.jcrysgro.2008.04.031
  2. Sarti, D., Einhaus, R., 2002 : Silicon feedstock for the multicrystalline photovoltaic industry, Sol. Energy Mater. Sol. Cells, 72, pp. 27-40. https://doi.org/10.1016/S0927-0248(01)00147-7
  3. Dold, P., 2004 : Analysis of microsegregation in RF-heated float zone growth of silicon-comparison to the radiationheated process, J. cryst. growth, 261, pp. 1-10. https://doi.org/10.1016/j.jcrysgro.2003.08.073
  4. Fthenakis, V, M., 2000 : End-of-life management and recycling of PV modules, Energy Policy, 20, pp. 1051- 1058.
  5. Bohaland, J. R., Anisimov, I. I., 1997 : Possibility of recycling silicon PV modules, pp1173-1175, Proc. of 26th IEEE PVSC, Anaheim-America, 29 September - October 3 1997.
  6. Bruton, T. M. et al., 1994 : Re-cycling of high value, high energy content components of silicon PV modules, pp. 303-304, Proc. of 12th EC-PVSEC, Amsterdam-Netherlands, 11-15 Apr 1994.
  7. Doi, T. et al., 2001 : Experimental study on PV module recycling with organic solvent method, Sol. Energy Mater. Sol. Cells, 67, pp. 397-403. https://doi.org/10.1016/S0927-0248(00)00308-1
  8. Radziemska, E. K., Ostrowski, P., 2010 : Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules, Renew. Energy, 35, pp. 1751-1759. https://doi.org/10.1016/j.renene.2009.11.031
  9. Zhang, L., Ciftja, A., 2008 : Recycling of solar cell silicon scraps through filtration, Part I:Experimental investigation, Energy Mater. Sol. Cells, 92, pp. 1450-1461. https://doi.org/10.1016/j.solmat.2008.06.006
  10. Choo, S. T., Choi, S. K., 2003 : Aluminum development of nitric acid free de-smut solution for the alloy in the alkaline etching, Theories and Applications of Chem. Eng, 9, pp. 2348-2351.

Cited by

  1. Recovery of Pb-Sn Alloy and Copper from Photovoltaic Ribbon in Spent Solar Module vol.415, 2017, https://doi.org/10.1016/j.apsusc.2017.02.072
  2. Recovery of Copper from Spent Photovoltaic Ribbon in Solar Module vol.22, pp.5, 2013, https://doi.org/10.7844/kirr.2013.22.5.50
  3. Bath-type 초음파(超音波) 세척기(洗滌器)를 이용(利用)한 태양전지모듈 접착제(接着劑) EVA(Ethylene Vinyl Acetate) 분해특성(分解特性) vol.20, pp.6, 2011, https://doi.org/10.7844/kirr.2011.20.6.050