DOI QR코드

DOI QR Code

Review on bioleaching of uranium from low-grade ore

저품위(低品位) 우라늄철(鑛)의 미생물 침출법(浸出法)

  • Patra, A.K. (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Pradhan, D. (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Kim, D.J. (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Ahn, J.G (Division of Energy resources Engineering, Jungwon University) ;
  • Yoon, H.S. (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • ;
  • ;
  • 김동진 (한국지질자원연구원 광물자원연구본부) ;
  • 안종관 (중원대학교 에너지자원공학부) ;
  • 윤호성 (한국지질자원연구원 광물자원연구본부)
  • Received : 2010.08.12
  • Accepted : 2011.03.11
  • Published : 2011.04.29

Abstract

This review describes the involvement of different microorganisms for the recovery of uranium from the ore. Mainly Acidithiobacillus forrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans are found to be the most widely used bacteria in the bioleaching process of uranium. The bioleaching of uranium generally follows indirect mechanism in which bacteria provide the ferric iron required to oxidize $U^{4+}$. Commercial applications of bioleaching have been incorporated for extracting valuable metals, due to its favorable process economics and reduced environmental problems compared to conventional metal recovery processes such as smelting. At present the uranium is recovered through main bioleaching techniques employed by heap, dump and in situ leaching. Process development has included recognition of the importance of aeration of bioheaps, and improvements in stirred tank reactor design and operation. Concurrently, knowledge of the key microorganisms involved in these processes has advanced, aided by advances in molecular biology to characterize microbial populations.

본 총설은 광석으로부터 우라늄의 미생물 침출시 사용하는 Acidithiobacillus forrooxidans, Acidithiobacillus thiooxidans 그리고 Leptospirillum ferrooxidans 등에 역할과 침출반응에 관하여 기술하였다. 미생물에 의한 우라늄의 침출반응은 박테리아가 우라늄 광석과 직접 반응하기 보다는 박테리아가 $U^{4+}$를 산화시키는데 필요한 $Fe^{3+}$를 공급하고, $Fe^{3+}$가 우라늄 광석과 반응하는 간접반응기구(indirect mechanism)에 의하여 일어난다. 건식제련법과 같은 전통적인 금속회수 공정에 비하여 환경친화적이고 경제적인 장점 때문에 저품위 광물자원으로부터 유기금속을 회수하는데 미생물 제련법이 널리 활용되고 있다. 현재 우라늄은 heap, dump 그리고 in situ를 이용한 미생물 침출법으로 회수되고 있다. Bioheap의 공기 투입량, 교반반응용기의 디자인 및 조업 개선 분야에서 기술개발이 지속적으로 이루어졌으며 최근에는 미생물 침출반응에 투입된 박테리아의 특성 개선 및 균주수를 제어하기 위한 molecular biology 분야에서 활발한 연구가 진행되고 있다.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. A.E. Cahill, and L.E. Burkhart, 1990: Continuous precipitation of uranium with hydrogen peroxide. Metall. Trans. B, 21(8), 19-826. https://doi.org/10.1007/BF02658112
  2. W. Burgstaller, F. Schinner, 1993: Leaching of metals with fungi. J. Biotechnol., 27, 91-116. https://doi.org/10.1016/0168-1656(93)90101-R
  3. A.E. Torma, 1986: Biohydrometallurgy as an emerging technology. Published by Wiley, New York, NY, ETATSUNIS, ISSN 0572-6565. Biotechnol. Bioeng. Symp., 16, 49-63.
  4. K.L. Bhola, 1971: Uranium deposits in Singhbhum for use in nuclear power programme. Proc. Natl. Sci. Acad., 37A.
  5. R.G.L. McCready and W.D. Gould, 1990: Bioleaching of uranium. In: Microbial Mineral Recovery (Ehrlich, H.L. and Brierley, C.L., Eds.), McGraw-Hill, New York, NY., 107-125.
  6. sxr Uranium One Inc.: website: (http://www.uranium1.com)
  7. Yeelirrie Project: website: (http://www.bhpbilliton.com)
  8. Stone and Webster Engineering Corporation, Denver, Colorado, 1978. Uranium mining and milling: The need, the processes, the impacts, the choice - Administrator's guide. 3, 37-39.
  9. International atomic energy agency, 2001. Manual of acid in situ leach uranium mining technology, p-1.
  10. D. E. Rawlings and S. Silver, 1995: Mining with microbes. Biotechnology, 13,773-778 https://doi.org/10.1038/nbt0895-773
  11. V.F. Harrison, W.A. Gow, K.C. Ivarson, 1966: Leaching of uranium from Elliot Lake ore in the presence of bacteria. Can Mineral J., 87, 64-67.
  12. T. Rohwerder, T. Gehrke, K. Kinzler and W. Sand, 2003: Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol., 63, 239-248. https://doi.org/10.1007/s00253-003-1448-7
  13. R.J. Ring, 1979: Leaching characteristics of Australian uranium ores. Proc. Australia. Inst. Min. Metall., 272, 13- 23.
  14. J. Babjak, and E. Krause, 1988: Leaching of uranium ore. Patent No. 4,764,353 (USA). Aug. 16, 4 pp.
  15. J.E. Dutrizac, and J.C. MacDonald, 1974: Ferric ion as a leaching medium. Min. Sci. Eng., 6, 59 -100.
  16. T. Cabral, I. Ignatiadis, 2001: Mechanistic study of the pyrite-solution interface during the oxidative bacterial dissolution of pyrite (FeS2) by using electrochemical techniques. International Journal of Mineral Processing, 62, 41-64. https://doi.org/10.1016/S0301-7516(00)00044-2
  17. R. Guay, M., Silver, and A.E. Torma, 1977: Ferrous iron oxidation and uranium extraction by Acidithiobacillus ferrooxidans. Biotechnology and Bioengineering, 19, 727- 740. https://doi.org/10.1002/bit.260190509
  18. G.S. Hansford, T. Vargas, 2001: Chemical and electrochemical basis of bioleaching processes. Hydrometallurgy, 59, 135-145. https://doi.org/10.1016/S0304-386X(00)00166-3
  19. W. Sand, T. Gehrke, P.G. Jozsa, A. Schippers, 2001: Biochemistry of bacterial leachingdirect vs. indirect bioleaching. Hydrometallurgy, 59, 159-175. https://doi.org/10.1016/S0304-386X(00)00180-8
  20. R.G.L. McCready, D. Wadden, A. Marchbank, 1986: Nutrient requirements for the inplace leaching of uranium by Acidithiobacillus ferrooxidans. Hydrometallurgy, 17, 61-71. https://doi.org/10.1016/0304-386X(86)90021-6
  21. M.S. Choi, K.S. Cho, D.S. Kim, H.W. Regu, 2005: Bioleaching of uranium from low grade black schists by Acidithiobacillus ferrooxidans. World Journal of Microbiology and Biotechnology, 21(3), 377-380. https://doi.org/10.1007/s11274-004-3627-9
  22. R.T. Anderson, D.R. Lovley, 2002: Microbial redox interactions with uranium, an environmental perspective. In: Roach, M.J.K., Levins, F.R. (Eds.), Interaction of Microorganism with Radionuclides. Elsevier Science Ltd., Chapter-7, 205-223.
  23. T.T. Bonk, W.M. Meijer, W. Hazen, J.P. Van Dijken, D. Bos, J.G. Kuenen, 1997: Growth of Acidithiobacillus ferrooxidans on formic acid. Applied Environmental Microbiology, 57(7), 2057-2062
  24. P. Devasia, K.A. Natarajan, 2004: Bacterial leaching- biotechnology in the mining industry. Resonance, 27, 27- 34.
  25. D. Wadden, A. Gallant, 1984: The In-Place Leaching of Uranium at Denison Mines, presented at the 23rd Annual Conference of Metallurgists, Quebec, 19-22.
  26. O.H. Tuovinen, C.J. Hsu, 1984: Effect of pH, iron concentration, and pulp density on the solubilisation of uranium from ore material in chemical and microbiological acid leach solutions: Regression equation and confidence band analysis. Hydrometallurgy 12, 141-149. https://doi.org/10.1016/0304-386X(84)90031-8
  27. O.H. Tuovinen, A.A. Dispirito, 1984: Biological transformation and accumulation of uranium with emphasis on Acidithiobacillus ferrooxidans. In: M.J. Klug and C. Reddy, Current Perspectives in Microbiology and Ecology, Proc. Int. Symp. Am. Sot. Microbial., 608-614.
  28. A. A. DiSpirito, O. H. Tuovinen, 1981: Oxygen uptake coupled with uranous sulfate oxidation by Acidithiobacillus ferrooxidans and T acidophilus. Geomicrobiology Journal, 2, 275-291. https://doi.org/10.1080/01490458109377767
  29. A. A. DiSpirito, O. H. Tuovinen, 1982a: Kinetics of uranous ion and ferrous iron oxidation by Acidithiobacillus ferrooxidans. Archives of Microbiology, 133, 33-37. https://doi.org/10.1007/BF00943766
  30. A. A. DiSpirito, O. H. Tuovinen, 1982b: Uranous ion oxidation and carbon dioxide fixation by Acidithiobacillus ferrooxidans. Archives of Microbiology, 133, 28-32. https://doi.org/10.1007/BF00943765
  31. O. H. Thovinen, D. P. Kelly, 1974: Studies on the growth of Acidithiobacillus fenvoxidans II. Toxicity of uranium to growing cultures and tolerance conferred by mutation, other metal cations and EDTA. Archives of Microbiology, 95, 153-164. https://doi.org/10.1007/BF02451757
  32. A. J. Francis, 1990: Microbial dissolution and stabilization of toxic metals and radionuclides in mixedwastes. Experientia, 46, 840-851. https://doi.org/10.1007/BF01935535
  33. K. Bosecker, 1997: Bioleaching: metal solubilization by micro-organisms. FEMS Microbiology Reviews, 20, 591- 604. https://doi.org/10.1111/j.1574-6976.1997.tb00340.x
  34. D.P. Kelly, A.P. Wood, 2000: Reclassification of some species of Acidithiobacillus to the newly designated genera Acidithiobacillus gen. nov., HaloAcidithiobacillus gen. nov. and ThermiAcidithiobacillus gen. nov.", International Journal of Systematic and Evolutionary Microbiology, 50, 511-516. https://doi.org/10.1099/00207713-50-2-511
  35. W. Vishniac, M. Santer, 1957: The Thiobacilli. Bacteriol. Rev., 21, 195-213.
  36. P.A. Trudinger, 1967: The metabolism of inorganic sulphur compounds by Thiobacilli. Rev. Pure Appl. Chem., 17, 3- 4.
  37. K.L. Temple and A.R. Colmer, 1951: The autotrophic oxidation of iron by a new bacterium, Acidithiobacillus ferrooxidans, J. Bacteriol, 62, 605-611.
  38. A.R. Colmer, M.E. Hinkle, 1947: The role of microorganisms in acid mine drainage; a preliminary report. Science, 106, 253-256. https://doi.org/10.1126/science.106.2751.253
  39. T. Sugio, 1985: Role of ferric reducing system in sulfur oxidation of Acidithiobacillus ferrooxidans. Appl. Environ. Microbiol., 49, 1401-1406.
  40. T.M. Bhatti, A. Vuorinen, M. Lehtinen, O.H. Tuovinen, 1998: Dissolution of uraninite in acid solution. Journal of Chemical Technology & Biotechnology, 73, 259-263. https://doi.org/10.1002/(SICI)1097-4660(1998110)73:3<259::AID-JCTB937>3.0.CO;2-Z
  41. Olli H. Tuovinen, 1986: Acid leaching of uranium ore materials with microbial catalysis, Biotechnology and Bioengineering Symposium, 16, 65-72.
  42. S.A. Waksman, J. S. Joffe, 1922: Micro-organisms concerned with the oxidation of sulphur in soil. II. Acidithiobacillus thiooxidans, a new sulphur oxidising organism isolated from the soil. J. Bacteriol., 7(2)239-256.
  43. E. Drobner, H. Huber, R. Rachel, K. O. Stetter, 1992: Acidithiobacillus plumbophilus spec. nov., a novel galena and hydrogen oxidizer. Arch Microbiol., 157(3), 213-217. https://doi.org/10.1007/BF00245152
  44. H. Hippe, 2000: Leptospirillum gen. nov. (ex Markosyan 1972),nom. rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al., 1992). International Journal of Systematic and Evolutionary Microbiology, 50, 501-503. https://doi.org/10.1099/00207713-50-2-501
  45. G.E. Markosyan, 1972: A new iron-oxidizing bacterium- Leptospirillum ferrooxidans nov. gen. nov. sp., Biol. J Armenia, 25, 26-29 (in Russian).
  46. W. Sand, 1992: Evaluation of Leptospirillum ferrooxidans for leaching. Appl. Environ. Microbiol. 58, 85-92.
  47. P.R. Norris, 1986: Moderately thermophilic mineraloxidizing bacteria. Biotechnol. Bioeng. Symp. 16, 253-262.
  48. J.R. Hanies, N. Hendy, I.M. Ritchie, 1988: Rate controls on leaching in pyritic mine wastes. In: P.R. Norris and D.P. Kelly (Editors), Biohydrometallurgy'87, STL, Kew, Surrey, pp-233-241.
  49. G. Rossi, 1990: Biohydrometallurgy. McGraw-Hill, New York, p-1.
  50. A. Cecal, D. Humelnicu, K. Popa, V. Rudic, A. Gulea, I. Palamaru, G. Nemtoi, 2000: Bioleaching of $UO_2^{2+}$ ions from poor uranium ores by means of cyanobacteria. Journal of Radioanalytical and Nuclear Chemistry, 245(2), 427-429. https://doi.org/10.1023/A:1006707815553
  51. M.A. Hefnawy, M. El-said, M. Hussein, A.A. Maisa, 2002: Fungal leaching of uranium from its geological ores in Alloga area West Central Sinai, Egypt, Online. J. Biol. Sci., 2, 346-350. https://doi.org/10.3923/jbs.2002.346.350
  52. S. Mohapatra, S. Bohidar, N. Pradhan, R.N. Kar, L.B. Sukla, 2007: Microbial extraction of nickel from Sukinda chromite overburden by Acidithiobacillus ferrooxidans and Aspergillus strains. Hydrometallurgy, 85, 1-8. https://doi.org/10.1016/j.hydromet.2006.07.001
  53. N. Pradhan, B. Das, C.S. Gahan, R.N. Kar, L.B. Sukla, 2006: Beneficiation of iron ore slime using A. niger and B. circulans. Bioresour. Technol. 97, 1876-1879. https://doi.org/10.1016/j.biortech.2005.08.010
  54. G.M. Gadd, 1999: Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv. Microb. Physiol., 41, 47- 92. https://doi.org/10.1016/S0065-2911(08)60165-4
  55. W. Schwartz, Naeveke, 1980: Biotechnical leaching of lead ores using heterotrophic microorganisms. Metallurgy 34, 847-850.
  56. A. Mishra, N. Pradhan, R. N. Kar, L. B. Sukla, B. K. Mishra, 2009: Microbial recovery of uranium using native fungal strains, Hydrometallurgy, 95, 175-177. https://doi.org/10.1016/j.hydromet.2008.04.005
  57. O.W. Purvis, E.H. Bailey, J. McLean, T. Kasama, B.J. Williamson, 2004: Uranium biosorption by the lichen Trapelia involuta at a uranium mine. Geomicrobiology Journal, 21, 159-167. https://doi.org/10.1080/01490450490275398
  58. F. Glombitza, 1988 Mikrobielle Laugung von seltenen Erdelementen und Spurenelementen. BioEngineering 4, 37-43.
  59. J. Barrett, M.N. Hughes, G.I. Karavaiko, and P.A. Spencer, 1993. Metal extraction by bacterial oxidation of minerals. In: Inorganic chemistry (Burgess, E.H.J., Ed.), pp. 212-221. Ellis Horwood, Chichester.
  60. G.J. Olson, 1994. Microbial oxidation of gold ores and gold bioleaching. FEMS Microbiol. Lett. 119, 1-6. https://doi.org/10.1111/j.1574-6968.1994.tb06858.x
  61. G. Rossi, 1990. Biohydrometallurgy. McGraw-Hill, Hamburg.
  62. J. A. Muñoz, F. Gonzalez, M.L. Blazqez, A. Ballester, 1995: A study of the bioleaching of a Spanish uranium ore. Part I: A review of the bacterial leaching in the treatment of uranium ores. Hydrometallurgy, 38, 39-57. https://doi.org/10.1016/0304-386X(94)00039-6
  63. W. Krebs, P.P. Bosshard, H. Brandl, and R. Bachofen 1996. From waste to resource: Metal recovery from solid waste incineration residues by microorganisms. Abstracts of the Spring Meeting of the Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM), Bayreuth. Biospektrum Suppl., March 1996, pp. 98.
  64. C.L. Brierley, 1982. Microbial mining. Sci. Am. 247, 42- 51.
  65. W. Burgstaller, 1993. Leaching of metals with fungi. J. Biotechnol. 27, 91-116. https://doi.org/10.1016/0168-1656(93)90101-R
  66. H. Strasser, 1994. High yield production of oxalic acid for metal leaching processes by Aspergillus niger. FEMS Microbiol. Lett. 119, 365-370. https://doi.org/10.1111/j.1574-6968.1994.tb06914.x
  67. P.P. Bosshard, 1996. Metal leaching of fly ash from municipal water incineration by Aspergillus niger. Environ. Sci. Technol.30, 3066-3070. https://doi.org/10.1021/es960151v
  68. J.A. Sayer, 1995. Solubilization of insoluble metal compounds by soil fungi: development of a screening method for solubilizing ability and metal tolerance. Mycol. Res. 99, 987-993. https://doi.org/10.1016/S0953-7562(09)80762-4
  69. H.L. Ehrlich, 1991: Microbes for biohydrometallurgy. The Minerals, Metals and Materials Socity, Warrendale, Pennsylvania. In: Mineral Bioprocessing (RW Smith and Misra, eds.), pp 27-41.
  70. A.D. Agate, 1983: Bioleaching of Indian Uranium Ores. Associazione of Mineraria Sarda, Iglesias, Italy. In Recent Progress in Biohydromelullurgy, eds Rossi, G. & Torma, A.E. pp 325-330.
  71. O.G. Junior, 1993: Bacterial leaching of uranium ore from Figueira-PR, Brazil, at laboratory and pilot scale. FEMS Microbiology Reviews 11 (1-3), 237-242.
  72. J.A. Mufioz, A. Ballester, F. Gonzilez, M.L. Bliizquez, 1995: A study of the bioleaching of a Spanish uranium ore Part II: Orbital shaker experiments. Hydrometallurgy, 38, 59-78. https://doi.org/10.1016/0304-386X(94)00037-4
  73. Tariq Mahmood, 1994: Bacterial Heap leaching studies of low-grade uranium ores from Siwalik sandstone ore deposits, Sulaiman range, Pakistan. A Thesis submitted to the university of Punjab, Lahore.
  74. J.A. Muñoz, F. Gonzalez, A. Ballester, M.L. Blazquez, 1993: Bioleaching of a Spanish uranium ore. FEMS Microbiology Reviews, 11, (1-3) 109-119. https://doi.org/10.1111/j.1574-6976.1993.tb00274.x
  75. J.A. Muiioz, M.L. Bkizquez, A. Ballester, F. Gonzalez, 1995: A study of the bioleaching of a Spanish uranium ore. Part III: Column experiments, Hydrometallurgy, 38, 79-97. https://doi.org/10.1016/0304-386X(94)00038-5
  76. Chen Gong-Xin, Wang Guan-Chai, Liu Jin-Hui, 2009: Study on Bioleaching of Uranium Ore in Magnetic Stirring Reactor and Gas Stirring Reactor. http://www. goldschmidt2010.org/abstra
  77. E. Livesey-Goldblatt, T.H. Tunley, I.F. Nagy, 1977: Pilotplant bacterial film oxidation (BACFOX Process) of recycled acidified uranium plant ferrous sulphate leach solution. In Conference on Bacterial Leaching - 1977, ed Schwarz, W. New York: Verlag-Chemie., 175-190.
  78. A. Audsley, G.R. Dabom, 1963: Natural leaching of uranium ores, 3 - application to specific ores. Transactions of Institute of Mining and Metallurgy, 72, 247-324.
  79. R. Deny, K.H. Garrett, N.W. Le Roux, S.E. Smith, 1977: Bacterially assisted plant process for leaching uranium ores. In Geology, mining and extructive processing of uranium, ed Jones, MJ. London: Institute of Mining and Metallurgy, 56.
  80. R.A. McGregor, 1969: Uranium dividends from bacterial leaching. Mining Engineering 21, 54-55.
  81. R.A. Thomas, 1978: Agnew Lake Mines: Taking giant steps in solution mining. Engineering and Mining Journal, 179, 158.
  82. E. Czako-Ver, B. Czegledi., L. Fekete, M. Kecskes, 1980: Bacterial investigations of sodic-uranium leaching process. In Proceedings of the International Conference on Use of Microorganisms in Hydrometallurgy, Pecs, Hungary: Hungarian Academy of Science. p. 19
  83. K. Fekete, B. Czegledi, K. Czako-Ver, M. Kecsks, 1980: Laboratory and pilot plant investigation of sodic-uranium leaching using bacteria. In Proceedings of International Conference on 'Use of microorganisms in Hydrometallurgy', p. 43.
  84. Pecs, Hungary: Hungarian Academy of Sciences.D. Wadden, A. Gallant, 1985: The in-place leaching of uranium at Denison Mines. Can. Metall. Q., 24, (2) 127-134. https://doi.org/10.1179/000844385795448803
  85. D. Wadden, A. Gallant, 1984: The In-Place Leaching of Uranium at Denison Mines, presented at the 23rd Annual Conference of Metallurgists, Quebec, pp 19-22.
  86. M.H. Kotze, B.R. Green, J.W. Neale, L. Swanepoel, 2006: Mintek's re-entry into uranium research and development. ALTA 2006 Uranium. Melbourne, ALTA Hydrometallurgical Services, 15.

Cited by

  1. Column Bioleaching of Arsenic from Mine Tailings Using a Mixed Acidophilic Culture: A Technical Feasibility Assessment vol.24, pp.6, 2015, https://doi.org/10.7844/kirr.2015.24.6.69
  2. Experiences and Future Challenges of Bioleaching Research in South Korea vol.6, pp.4, 2016, https://doi.org/10.3390/min6040128