참고문헌
- M. A. Abdou, A. A. Soliman, and S. T. El-Basyony, New application of exp-function method for improved boussinesq equation, Physics Letters, Section As : General, Atomic and Solid State Physics 369 (2007), 469-475.
- M.J. Ablowitz, B.M.Herbst, and C. Schober, On the numerical solution of the sinh-gordon equation, Journal of Computational Physics 126 (1996), 299-314. https://doi.org/10.1006/jcph.1996.0139
- MJ. Ablowitz and PA. Clarkson, Solitons, nonlinear evolution equations and inverse scatting, Cambridge University Press, 1991.
- L.M.B. Assas, New exact solutions for the kawahara equation using exp-function method, Journal of Computational and Applied Mathematics 233 (2009), 97-102. https://doi.org/10.1016/j.cam.2009.07.016
- M.E. Berberler and A. Yildirim, He's homotopy perturbation method for solving the shock wave equation, Applicable Analysis 88 (2009), 997-1004. https://doi.org/10.1080/00036810903114767
- J. Biazar and Z. Ayati, Extension of the exp-function method for systems of two- dimensional burger's equations, Computers and Mathematics with Applications 58 (2009), 2103-2106. https://doi.org/10.1016/j.camwa.2009.03.003
- J. Biazar, F. Badpeimaa, and F. Azimi, Application of the homotopy perturbation method to zakharov-kuznetsov equations, Computers and Mathematics with Applications 58 (2009), 2391-2394. https://doi.org/10.1016/j.camwa.2009.03.102
- L. Bougoffa and A. Khanfer, Particular solutions to equations of sine-gordon type, Journal of Applied Mathematics and Computing 32 (2010), 303-309. https://doi.org/10.1007/s12190-009-0252-7
- C.Koroglu and T.zis, A novel traveling wave solution for ostrovsky equation using expfunction method, Computers and Mathematics with Applications 58 (2009), 2142-2146. https://doi.org/10.1016/j.camwa.2009.03.028
- M. Dehghan and A. Shokri, Numerical solution of the nonlinear klein-gordon equation using radial basis functions, Journal of Computational and Applied Mathematics 230 (2009), 400-410. https://doi.org/10.1016/j.cam.2008.12.011
- G. Domairry, A. G. Davodi, and A. G. Davodi, Solutions for the double sine-gordon equation by exp-function, tanh, and extended tanh methods, Numerical Methods for Partial Differential Equations 26 (2010), 384-398.
- A. Ebaid, Exact solitary wave solutions for some nonlinear evolution equations via exp- function method, Physics Letters, Section As : General, Atomic and Solid State Physics 365 (2007), 213-219.
- A.E.H. Ebaid, Generalization of he's exp-function method and new exact solutions for burger's equation, Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences 64 (2009), 604-608.
- E.Yusufoglu and A. Bekir, The variational iteration method for solitary patterns solutions of gbbm equation, Physics Letters A 367 (2007), 461-464. https://doi.org/10.1016/j.physleta.2007.03.045
- Z. Fu, S. Liu, and S. Liu, Exact solutions to double and triple sinh-gordon equations, Z. Naturforsch 59 (2004), 933-937.
- Gegenhasi, Xing-Biao Hu, and Hong-Yan Wang, A (2+1)-dimensional sinh-gordon equation and its pfaffan generalization, Physics Letters A 360 (2007), 439-447. https://doi.org/10.1016/j.physleta.2006.07.031
- V. I. Gromak, Solutions of the third painleve equation, Differential Equations 9 (1973), 1599-1600.
- I. Hashim, M. S. M. Noorani, and M. R. S. Hadidi, Solving the generalized burger's- huxley equation using the adomian decomposition method, Mathematical and Computer Modelling 43 (2006), 1404-1411. https://doi.org/10.1016/j.mcm.2005.08.017
- J. H. He and M. A. Abdou, New periodic solutions for nonlinear evolution equations using exp-function method, Chaos, Solitons and Fractals 34 (2007), 1421-1429. https://doi.org/10.1016/j.chaos.2006.05.072
- J. H. He and X. H.Wu, Exp-function method for nonlinear wave equations, Chaos, Solitons and Fractals 30 (2006), 700-708. https://doi.org/10.1016/j.chaos.2006.03.020
- J. H. He and X. H.Wu, Exp-function method and its application to nonlinear equations, Chaos, Solitons and Fractals 38 (2008), 903-910. https://doi.org/10.1016/j.chaos.2007.01.024
- J. H. He and L. Zhang, Generalized solitary solution and compacton-like solution of the jaulent-miodek equations using the exp-function method, Physics Letters, Section As : General, Atomic and Solid State Physics 372 (2008), 1044-1047.
- W. Hu, Z. Deng, S. Han, and W. Fan, The complex multi-symplectic scheme for the generalized sinh-gordon equation, Science in China, Series G: Physics, Mechanics and Astronomy 52 (2009), 1618-1623. https://doi.org/10.1007/s11433-009-0190-2
- E. Infeld and G. Rowlands, Nonlinear waves, Solitons and Chaos,Cambridge, England, 2000.
- N. A. Kudryashov, Seven common errors in ?nding exact solutions of nonlinear differential equations, Commun Nonlinear Sci Numer Simulat 14 (2009), 3507-3529. https://doi.org/10.1016/j.cnsns.2009.01.023
- T. Ozis and C. Koroglu, A novel approach for solving the fisher equation using exp-function method, Physics Letters, Section As : General, Atomic and Solid State Physics 372 (2008), 3836-3840.
- K. Parand, M. Dehghan, A.R. Rezaei, and S.M. Ghaderi, An approximation algorithm for the solution of the nonlinear lane-emden type equations arising in astrophysics using hermite functions collocation method, Computer Physics Communications (2010).
- K. Parand and M. Razzaghi, Rational chebyshev tau method for solving volterra's population model, Appl. Math. Comput 149 (2004), 893-900. https://doi.org/10.1016/j.amc.2003.09.006
- K. Parand and A. Taghavi, Rational scaled generalized laguerre function collocation method for solving the blasius equation, Journal of Computational and Applied Mathematics 233 (2009), 980-989. https://doi.org/10.1016/j.cam.2009.08.106
- J.K. Perring and T.H. Skyrme, A model unified field equation, Nuel. Phys. 31 (1962), 550-555.
- A. Polyanin and V.F. Zaitsev, Handbook of nonlinear partial differential equations, CRC, Boca Raton, FL, 2004.
- M.M. Rashidi, D.D. Ganji, and S. Dinarvand, Explicit analytical solutions of the generalized burger and burger-fisher equations by homotopy perturbation method, Numerical Methods for Partial Differential Equations 25 (2009), 409-417. https://doi.org/10.1002/num.20350
- W. Rui, B. He, and Y.Long, Double periodic wave solutions and breather-soliton solutions of the (n+1)-dimensional sinh-gordon equation, Journal of Physics: Conference Series 96 (2008), 012048.
- F. Shakeri and M. Dehghan, Numerical solution of the kleingordon equation via he's variational iteration method, Nonlinear Dynamics 51 (2008), 89-97.
- B.C. Shin, M.T. Darvishi, and A. Barati, Some exact and new solutions of the nizhnik- novikov-vesselov equation using the exp-function method, Computers and Mathematics with Applications 58 (2009), 2147-2151. https://doi.org/10.1016/j.camwa.2009.03.006
- Sirendaoreji and S. Jiongu, A direct method for solving sine-gordon type equations, Physics Letters A 298 (2002), 133-139. https://doi.org/10.1016/S0375-9601(02)00513-3
- A.A. Soliman and M.A. Abdou, Numerical solutions of nonlinear evolution equations using variational iteration method, Journal of Computational and Applied Mathematics 207 (2007), 111-120. https://doi.org/10.1016/j.cam.2006.07.016
- S. Tang and W. Huang, Bifurcations of travelling wave solutions for the generalized double sinh-gordon equation, Applied Mathematics and Computation 189 (2007), 1774-1781. https://doi.org/10.1016/j.amc.2006.12.082
- F. Tascan and A. Bekir, Analytic solutions of the (2 + 1)-dimensional nonlinear evolu- tion equations using the sine-cosine method, Applied Mathematics and Computation 215 (2009), 3134-3139. https://doi.org/10.1016/j.amc.2009.09.027
- M. Tatari, M. Dehghan, and M. Razzaghi, Application of the adomian decomposition method for the fokker-planck equation, Mathematical and Computer Modelling 45 (2007), 639-650. https://doi.org/10.1016/j.mcm.2006.07.010
- M. Tatari and M. M. Dehghan, A method for solving partial differential equations via radial basis functions: Application to the heat equation, Engineering Analysis with Boundary Elements 34 (2010), 206-212. https://doi.org/10.1016/j.enganabound.2009.09.003
- A. M. Wazwaz, New solitary wave solutions to the modified kawahara equation, Physics Letters, Section A: General, Atomic and Solid State Physics 360 (2007), 588-592.
- A.M. Wazwaz, Exact solutions to the double sinh-gordon equation by the tanh method and a variable separated ode method, Computers and Mathematics with Applications 50 (2005), 1685-1696. https://doi.org/10.1016/j.camwa.2005.05.010
- A.M. Wazwaz, The tanh method: exact solutions of the sine-gordon and the sinh-gordon equations, Applied Mathematics and Computation 167 (2005), 1196-1210. https://doi.org/10.1016/j.amc.2004.08.005
- A.M. Wazwaz, Exact solutions for the generalized sine-gordon and the generalized sinh-gordon equations, Chaos, Solitons and Fractals 28 (2006), 127-135. https://doi.org/10.1016/j.chaos.2005.05.017
- A.M. Wazwaz, The variable separated ode and the tanh methods for solving the combined and the double combined sinh-cosh-gordon equations, Applied Mathematics and Computation 177 (2006), 745-754. https://doi.org/10.1016/j.amc.2005.09.101
- G.B. Whitham, Linear and nonlinear waves, Wiley-Interscience, New York, 1999.
- ZK. Yan, A sinh-gordon equation expansion method to construct doubly periodic solutions for nonlinear differential equations, Chaos, Solitons and Fractals 16 (2003), 291-297. https://doi.org/10.1016/S0960-0779(02)00321-1
- H. Zhang, New exact solutions for the sinh-gordon equation, Chaos, Solitons and Fractals 28 (2006), 489-496. https://doi.org/10.1016/j.chaos.2005.07.005
- S. Zhang, Application of exp-function method to a kdv equation with variable coeffcients, Physics Letters, Section A: General, Atomic and Solid State Physics 365 (2007), 448-453.
- S. Zhang, Exp-function method for solving maccari's system, Physics Letters, Section A: General, Atomic and Solid State Physics 371 (2007), 65-71.
- S. Zhang, Application of exp-function method to high-dimensional nonlinear evolution equation, Chaos, Solitons and Fractals 38 (2008), 270-276. https://doi.org/10.1016/j.chaos.2006.11.014